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Theory of Equilibrium Flux Lattice in UPt3 under Magnetic Field
Parallel to Hexagonal Crystal Axis
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We investigate Abrikosov lattice structures in the unconventional superconductor UPt3 under magnetic
field parallel to the hexagonal crystal axis. Only the two-dimensional E2 superconducting state among
the many other states of different symmetry is compatible with the recent observation [A. Huxley et al.,
Nature (London) 406, 160 (2000)] of the flux lattice in the A phase misaligned with crystallographic
directions. It is shown that the inequality of the London penetration depths in the basal plane directions
resulting from the superposition of hexagonal crystal and superconducting state anisotropies leads for
E2 to a slightly distorted triangular flux lattice.
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It is well accepted that the heavy fermion superconduc-
tor UPt3 exhibits a multicomponent superconducting state.
This is obvious when considering the specific phase dia-
gram H 2 T (magnetic field temperature) for the mixed
state (see Fig. 1). This diagram clearly shows three dis-
tinct superconducting phases: A, B, and C [1–3]. The
theoretical models that have been proposed to explain the
phase diagram belong to two main categories. In the first
class of theories, the zero-field phase transition splitting
is due to the lifting of the degeneracy between the compo-
nents of one multicomponent superconducting state [4–6].
This lifting results from the action of a symmetry break-
ing field which is presumably connected with antiferro-
magnetic ordering of tiny magnetic moments located on
uranium atoms [7–9]. The other sources of the symmetry
breaking field that have been discussed are (i) the small
crystal field anisotropy or spin orbital interaction [10–12]
and (ii) the possible incommensurate modulations of the
crystal density [13]. The second type of multicomponent
treatment of the phase diagram is given in [14], where the
phase transition splitting is deduced from the existence
of two one-component superconducting states of differ-
ent symmetry with accidentally close critical temperatures.
One of the two states corresponds to the A phase, the other
to the C phase, and the mixture of both to the B phase.

The recent comprehensive analysis of the thermody-
namic and transport data presented in the paper [15] says
in favor of the two-dimensional (2D) spin-triplet E2u su-
perconducting state with the particular angular dependence
of the pairing interaction proposed in [16] as a develop-
ment of the initial model [4]. The achievement of the
correspondence between a microscopic theory and the ex-
periments each time implies some specific model assump-
tions. That is why the direct experimental manifestations
of the symmetry of the superconducting states are desir-
able for the unambiguous identification of phases. Such
an experiment — the small angle neutron scattering with
the direction of magnetic field parallel to the hexagonal
0031-9007�01�86(21)�4903(4)$15.00
axis of UPt3—has been performed recently in Grenoble
[17] for A and B phases.

In the A phase of UPt3, an unusual alignment of the
Abrikosov lattice rotated over 615± from the a crystallo-
graphic direction was discovered. On the contrary, in the B
phase the flux lines lattice (FLL) orientation did not reveal
a misalignment with hexagonal directions (see the details
of the experimental performance in [17]). In both A and B
phases, the flux lattices were close to the perfect hexago-
nal. These observations were interpreted by the authors of
[17] as the proof of the identification of A and B phases
with a superconducting state corresponding to the 2D E2u

model. Being accordant with this statement, we have to
note that it was done on the basis of the London approach
with the lowest order nonlocal correction developed for the
case of conventional [18] and nonconventional [19] 1D su-
perconducting states. The corresponding theory for the 2D
superconductivity has its own peculiarities, so our aim is
to develop the proper description of the equilibrium FLL

FIG. 1. Schematic phase diagram of the superconducting
mixed state of UPt3 for magnetic fields parallel to the hexagonal
crystal axis.
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structures for the 2D superconducting states in hexagonal
crystals with the magnetic field parallel to the crystal axis.
The earlier UPt3 FLL scattering experiments [20,21] and
the theory of the equilibrium FLL [22] were related to the
basal plane orientation of the magnetic field.

In this Letter, we show that, for the field parallel to
the c axis, (i) the Abrikosov lattice orientation is fixed
by general symmetry considerations, and (ii) the distor-
tion of the Abrikosov unit cell can be partly found in the
frame of the London local approximation. The latter is
a unique property of 2D superconductivity in the uniax-
ial crystals where, unlike 1D superconductivity, the basal
plane anisotropy of the tensor of superfluid density occurs.
As a result, the A phase FLL for the E1g superconduct-
ing state must be strongly distorted and aligned with the
hexagonal basal plane crystallographic directions. On the
contrary, the slightly distorted hexagonal FLL rotated over
the angles �615± from the crystal a direction observed in
the A phase of UPt3 corresponds to the 2D E2u supercon-
ducting state.

When the magnetic field is oriented along the hexago-
nal axis, there are only two sources for the basal plane
anisotropy: the sixfold anisotropy of the crystal itself and
the possible anisotropy of the unconventional supercon-
ducting state or, more explicitly, the directional depen-
dence of the modulus of the gap function in the k space
determining the expression for the superconducting cur-
rents in the London electrodynamics. For any 1D super-
conducting state in the hexagonal crystal with strong
spin-orbital coupling, this symmetry coincides with the
hexagonal symmetry of the crystal [23]. That is why there
are no preferential directions in the basal plane besides a,
a�, and the directions rotated with respect to them over the
angles np�3, n � 1, 2. In this case, there is no reason
for the A-phase misalignment of the FLL. Therefore we
need to consider only 2D superconducting states. We
shall limit ourselves to the most popular singlet E1g and
triplet E2u states.

In the even-parity model E1g, the superconducting
state is described by a complex 2D vector h � �h1, h2�.
The gap function is DE1g k�r� � cosu sinu�h1�r, T � 3

cosw 1 h2�r, T � sinw�. Here, w and u, are, respectively,
the azimuthal (in the basal plane) and polar angles of the
relative momentum of the particles in the Cooper pair re-
lated to crystal axes. A complex two-component order pa-
rameter h � �h1, h2� is also considered in the E2u model,
where the orbital gap function has the form DE2u k�r� �
ẑ cosu sin2u�h1�r, T � cos2w 1 h2�r, T � sin2w�.

At zero field, the order parameter is identified with
h � �1, 0� in the A phase and with h � �1, ib�T �� in the B
phase, where b�T � is a decreasing function with tempera-
ture which gets to zero at Tc2. It is commonly believed
that the phase transition splitting results from an antiferro-
magnetic (AF) symmetry breaking field which acts in favor
of one of the two components of the superconducting state.
Actually, there are three types of AF domains with differ-
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ent orientations of staggered magnetization [24]. One can
see, however, that the two types of three differently ori-
ented domains act in favor of the same component of the
superconducting order parameter. The third type of do-
main acts in favor of the other component. Its appearance
shall create additional inhomogeneities on the boundaries
between domains. In view of more or less close sizes of
the AF domains and of the A phase superconducting co-
herence length, the inhomogeneous superconducting state
seems to be energetically nonprofitable in comparison with
a one-component homogeneous superconducting state in
the whole specimen’s volume. That is why we shall make
our derivation in the frame of a single domain picture of
the symmetry breaking field causing, first, the appearance
of one definite component of a 2D superconducting state
in the whole specimen’s volume.

Under magnetic field in the A and B phases, both com-
ponents of h coexist and depend on space coordinates. We
can claim, however, that in the A phase the second compo-
nent in the vicinity of the upper critical temperature T �
Tc1 is much smaller than the first one: jh2j ø jh1j. In-
deed, in the A phase �h1, h2� are related via the Ginzburg-
Landau equations as (see, for example, Ref. [23])

�K123D2
x 1 K1D2

y �h1 1 �K2DxDy

1 K3DyDx�h2 1 a0t1h1 � 0 , (1)

�K123D2
y 1 K1D2

x �h2 1 �K3DxDy

1 K2DyDx�h1 1 a0t2h2 � 0 , (2)

where t1 � �T 2 Tc1��Tc1 , 0, t2 � �T 2 Tc2��
Tc2 . 0, K123 � K1 1 K2 1 K3, Di � 2i=i 1 2pAi�
f0 (here, f0 is the magnetic flux quantum and A is the
vector potential), and the coefficients K1, K2, K3, and a0
are positive constants. Neglecting the terms containing
the differential operators acting on h2 (which is justified
by the result), we solve first Eq. (1). By substituting the
result in Eq. (2), we get

h2 � i
K2 1 K3p

K123K1

jt1j

jt2j
h1 . (3)

As long as jt1j ø jt2j, we have jh2j ø jh1j. For the E2u

superconducting state, the latter property takes place in the
whole region of existence of the A phase in view of the
inequality K2 1 K3 ø K1 specific for this state [16] (see
also below).

So, one can say that in the A phase we have an addi-
tional source of anisotropy which roughly corresponds to
the symmetry of the modulus of the gap function of the
two-component superconducting state. This symmetry is
determined by the symmetry of the functions jh1 cosw 1

h2 sinwj for the E1g state and jh1 cos2w 1 h2 sin2wj for
the E2u state. The first function has only �xz� and �yz�
planes as symmetry planes passing through the hexagonal
crystal axis. The second function has two additional planes
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of symmetry obtained from the former ones by rotations
over the angles 645± around the z axis (bisecting planes).
This means that the E1g superconducting state does not cre-
ate a basal plane anisotropy corresponding to the A phase
FLL orientations rotated over 645± with respect to the
basal plane hexagonal crystal directions. On the contrary,
such an anisotropy definitely exists in the superconducting
E2u state. In presence of a small hexagonal anisotropy, the
FLL configurations must be weakly deviated from 645±

since the bisecting planes are not symmetry planes for the
Fermi surface. The weights of the components of the or-
der parameter in the superconducting B phase are approxi-
mately equal so that they effectively recreate the basal
plane isotropy and eliminate the reason for misalignment
of the vortex lattice with respect to the crystal directions.

If the FLL orientations could be established on a pure
symmetry basis, the finding of the lattice distortions re-
quires more quantitative considerations. UPt3 is a strong
type-II superconductor with a Ginzburg-Landau parame-
ter k � 60: It means that the London local and linear
electrodynamic description is valid for any temperature
and magnetic field H ø Hc2. The experiment [17] has
been performed at a much higher field H � 0.4Hc2. How-
ever, for simplicity, we shall discuss the equilibrium shape
of the FLL in the frame of the London approach. Then
we shall demonstrate the coincidence of the London equi-
librium configurations to those which are established in
the Ginzburg-Landau approximation valid for higher fields
H � Hc2.

In the London theory, the Fourier components of the su-
perconducting current density j�q� and the vector potential
A�q� are related via

ji�q� � 2
c

4p
Qij�q�Aj�q� . (4)

In the clean limit, the electromagnetic response tensor
Qij�q� has been pointed out for the arbitrary supercon-
ducting state and arbitrary Fermi surfaces [19]:

Qij�q� �
4pT

l
2
0

X
n.0

ø
jDk̂j

2ŷFiŷFjp
v2

n 1 jDk̂j
2�v2

n 1 jDk̂j
2 1 g2

q�

¿
,

(5)

where yF is the Fermi velocity and ŷFi � yFi�yF , gq �
yF ? q�2, vn � p�2n 2 1�T are Matsubara frequencies,
l0 is the London penetration depth at T � 0, and the
angular brackets mean the average over the Fermi surface.

The equilibrium vortex lattice minimizes the free energy
density [18] at a given magnetic induction B:

F �
B2

8p

X
q�G

f�q� , (6)

where the sum extends over all reciprocal lattice vectors
G and
f�q� �
g�q�

1 1 q2
x�Q21�yy 1 q2

y�Q21�xx 2 qxqy��Q21�xy 1 �Q21�yx�
.

(7)

The cutoff factor g�q� corrects the failure of the London
approximation in the vortex cores.

We need now to calculate the electromagnetic response
tensor Qij�q�. It is developed in powers of the quan-
tity g2

q: Q � Q�0� 1 Q�2� 1 . . ., where Q�0� ø Q�2�. At
leading order, which corresponds to the London local ap-
proximation, we have

f�q� �
g�q�

1 1 l2�q2 1 c1�q2
x 2 q2

y� 1 2c2qxqy�
, (8)

where l2 � �Q�0�
xx 1 Q

�0�
yy ��2 detQ�0�, c1 � �Q�0�

xx 2 Q
�0�
yy ��

�Q�0�
xx 1 Q

�0�
yy �, and c2 � 2Q

�0�
xy ��Q�0�

xx 1 Q
�0�
yy �.

The dimensionless coefficients cm originate from the
anisotropies of the Fermi surface and the superconducting
gap. They are nonzero only for the 2D superconducting
states. Since in the A phase we are in the Ginzburg-Landau
region, the gap function in the denominator of (5) can be
neglected and the coefficients giving the anisotropic terms
are expressed as

c1 �
�jDk̂j

2�ŷ2
Fx 2 ŷ

2
Fy�	

�jDk̂j
2	

, c2 �
�jDk̂j

22ŷFxŷFy	
�jDk̂j

2	
.

(9)

In order to evaluate the averages over the Fermi surface, we
consider for simplicity a cylindric energy spectrum with a
weak in-plane hexagonal anisotropy [16]:

ek � �h̄2�2m�� �k2
x 1 k2

y � 1 2aeF cos6w . (10)

Here, eF is the Fermi energy and a ø 1. Therefore the av-
erage is expressed as �. . .	 �

R2p

0 dw�1 2 a cos6w� �. . .��
2p, and the velocity at the Fermi surface at first order in
a becomes

ŷFx � cosw 1 3a�cos5w 2 cos7w� , (11)

ŷFy � sinw 2 3a�sin5w 1 sin7w� . (12)

We find for E1g:

c1 �
1
2

jh1j
2 2 jh2j

2

jh1j2 1 jh2j2
, c2 �

��h1h
�
2�

jh1j2 1 jh2j2
,

(13)

and for E2u:

c1 �
11
4

a
jh1j

2 2 jh2j
2

jh1j2 1 jh2j2
,

c2 � 2
11
2

a
��h1h

�
2�

jh1j2 1 jh2j2
. (14)

Since after Eq. (3) ��h1h
�
2� � 0 in the A phase, only the

anisotropic term with the coefficient c1 exists in the A
phase. The effect of such an anisotropy has been studied
by Kogan [25].
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FIG. 2. One vortex lattice configuration for both superconduct-
ing states E1g and E2u. The E1g state yields a square FLL (with
a � 45±) aligned with crystallographic directions. In the E2u
state, the FLL is almost perfectly hexagonal and oriented
along directions at c � 645± with regard to the a crystallo-
graphic axis.

Following [18,25] we shall consider the vortex lattice
configurations symmetric with regard to reflections by �xz�
and �yz� planes for E1g state. There are two possible
distorted FLL [25]. In the first configuration, the angle
of distortion a between the two basis vectors of the unit
cell of the FLL is given for H ¿ Hc1 by

tana �
p

3

µ
Q

�0�
yy

Q
�0�
xx

∂1�2

�
p

3

µ
1 2 c1

1 1 c1

∂1�2

. (15)

For jh2j ø jh1j, the E1g state therefore predicts a strong
distortion with a � 45± (a square FLL, see Fig. 2). The
value of a depends on the form of the energy spectrum.
For the second configuration, the FLL is also strongly
distorted.

For the E2u state, the FLL configurations rotated over the
angles 645± can be obtained by the same procedure as for
E1g only at a � 0 when the bisecting planes are planes of
symmetry for the FLL. In this case, c1 � c2 � 0 and the
FLL has the perfect hexagonal structure. In the presence
of a small hexagonal anisotropy, the FLL configuration
is both slightly distorted ��a� and oriented at c � 645±

(Fig. 2).
The application of Abrikosov-type formalism developed

in Ref. [26] for the ordinary superconductors with effective
mass anisotropy leads to the same conclusions. To see this,
one needs to take into account the property jh1j ¿ jh2j to
consider the Ginzburg-Landau Eq. (1) only for h1. Then
remembering that �K2 1 K3� � K1 for the E1g supercon-
ducting state and �K2 1 K3� � aK1 for the E2u super-
conducting state (see [16]), we come to the statement
formulated above.

In conclusion, we have described theoretically the
orientations and the distortions of the flux lattice in the
4906
superconducting A phase of UPt3 considering all possible
superconducting states of different symmetry. Only the
E2u state is consistent with the recently observed [17]
specially oriented and almost perfectly hexagonal vortex
lattice configuration. This statement and the theoretical
description of the low temperature behavior of the ther-
modynamic and transport properties [15] definitely settle
the two-component E2u superconducting state in UPt3.

The authors are indebted to A. Huxley and P. Rodière
for helpful discussions.
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