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Isotope Effects in Underdoped Cuprate Superconductors: A Quantum Critical Phenomenon
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We show that the unusual doping dependence of the isotope effects on transition temperature and zero
temperature in-plane penetration depth naturally follows from the doping driven 3D-2D crossover and
the 2D quantum superconductor to insulator transition in the underdoped limit. Since lattice distortions
are the primary consequence of isotope substitution, our analysis clearly reveals the strong involvement
of lattice degrees of freedom in mediating superconductivity.
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The observation of an unusual isotope effect in under-
doped cuprate superconductors on transition temperature
[1–3] and zero temperature penetration depth [4–7] poses
a challenge to the understanding of high temperature su-
perconductivity. For some time, superconductivity in the
cuprates has been believed to occur in a homogeneous
system, through magnetic mechanism. However, the ex-
perimental evidence for spatial charge and spin inhomo-
geneities and lattice effects has been accumulating over
the last years [8–14]. There is an emerging point of view
that in the underdoped regime, where the transition to the
insulator occurs, these inhomogeneities are the result of
strong electron-electron and electron-lattice interactions.
Since lattice distortions are the primary consequence of
isotope substitution, the isotope effect on superconducting
properties should provide unambiguous evidence for the
relevance of the lattice degrees of freedom.

In this Letter we show that the anomalous isotope effect
on transition temperature and penetration depth naturally
follows from the doping driven 3D-2D crossover, the 2D
quantum superconductor to insulator (QSI) transition in the
underdoped limit and the shift of this limit upon isotope
substitution. Thus, the unusual isotope effect on supercon-
ducting properties of underdoped cuprates is derived to be
a 2D quantum critical phenomenon tuned by variation of
the dopant concentration and lattice distortions.

Consider the empirical phase diagram of La22xSrxCuO4
[15–23] depicted in Fig. 1. It shows that after passing
the so-called underdoped limit �x � xu � 0.05�, where
the QSI transition occurs [24,25], Tc rises and reaches a
maximum value Tm

c at xm � 0.15. With further increase
of x, Tc decreases and finally vanishes in the over-
doped limit xo � 0.3. This phase transition line Tc�x�,
separating the superconducting from the normal conduct-
ing phase appears to be a generic property of cuprate
superconductors. In La22xSrxCuO4, HgBa2CuO41x

[27,28], and Bi2Sr2CuO61x [29] both the underdoped
and overdoped limits, corresponding to critical end
points, are experimentally accessible. In other cuprates,
including Bi2Sr2CaCu2O81x [30], YBa2Cu3O72x [31],
and Y12xPrxBa2Cu3O72d [32], only the underdoped
and optimally doped regimes appear to be accessible.
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As shown in Fig. 1 for La22xSrxCuO4 the effective
mass anisotropy, measured in terms of g �

p
Mc�Mab

increases drastically by approaching the underdoped limit.
This property, also observed in HgBa2CuO41d [28] and
YBa2Cu3O72x [31], appears to be generic and reveals
the crossover from three- (3D) to two-dimensional (2D)
behavior.

In our considerations the starting point is the critical end
point of the phase transition line Tc�x�, where at T � 0
and x � xu the doping tuned QSI transition occurs. Close
to such a critical point, low energy properties depend
only on the spatial dimensionality of the system, the
number of components of the order parameter and the
range of the interaction. Since g becomes very large
in the underdoped regime (Fig. 1) and is expected to
diverge at criticality �x � xu�, the bulk superconductors
correspond to a stack of independent superconducting
slabs of thickness ds. The theory of quantum critical
phenomena predicts that in D � 2 transition temperature
and zero temperature in-plane penetration depths scale
as [24,25,33]

Tc � adzn ,
1

l
2
ab�0�

� bdzn . (1)
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FIG. 1. Tc and g versus x for La22xSrxCuO4. Tc data taken
from [15–27]. The solid curve corresponds to g ~ d2n with
n � 1, d � x 2 xu, and xu � 0.05.
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z is the dynamic critical exponent, n is the exponent of
the diverging length jab�T � 0� ~ d2n , a and b denote
nonuniversal critical amplitudes, and

d � x 2 xu (2)

measures the distance from the quantum critical point at
xu, where in cuprate superconductors the QSI transition
occurs. For a complex scalar order parameter and in D �
2 the critical amplitudes a and b and the slab thickness ds

are not independent but related by the universal relation
[24,25,33]

lim
d!0

Tcl
2
ab�0�
ds

�
a

bds
�

1
Q2

µ
F

2
0

16p3kB

∂
, (3)

where Q2 is a universal number. Although the experimen-
tal data are rather sparse close to the QSI transition, the
overall picture turns out to be highly suggestive and pro-
vides consistent evidence for the QSI transition in D � 2
at the critical end point in the underdoped limit with criti-
cal exponents z � 1 and n � 1 [24–26]. This estimate
is close to theoretical predictions [34,35], from which
z � 1 is expected for a bosonic system with long-range
Coulomb interactions independent of dimensionality and
n $ 1 � 1.03 in D � 2. In Fig. 1 it is seen that n � 1
is also consistent with the doping dependence of the ef-
fective mass anisotropy g �

p
Mc�Mab ~ d2n . Mab de-

notes the in-plane and Mc the out-of-plane effective mass
of the Cooper pairs, entering the action of an anisotropic
superfluid via the spatial gradient terms. This behavior is
readily understood by noting that along the 3D-XY phase
transition line for Tc�x� . 0 the universal relation, kBTc �
�F2

0�16p3�j2
ab,0��gl

2
ab,0�, holds [36]. j

2
ab,0 and lab,0 are

the finite temperature critical amplitudes of in-plane corre-
lation length and penetration depth, respectively. Matching
with the quantum behavior (1) requires j

2
ab,0 ~ jab�T �

0� ~ d2n and l
22
ab,0 ~ l

22
ab �0� ~ dzn so that g ~ d2n .

Given the evidence for a generic 2D-QSI transition in
underdoped cuprate superconductors [24–26], we are now
prepared to explore the implications on the isotope effects
on Tc and 1�l

2
ab�0�. From the definition of the isotope

coefficient

bTc � 2
m
Tc

dTc

dm
, (4)

and Eq. (1) we obtain the scaling expression

bTc � ba 1 bd , (5)

where

ba � 2
m
a

da
dm

, bd �
zn

d
bd, bd � 2m

dd

dm
,

(6)

and m denotes the isotope mass. Since in the doping
regime of interest, isotope substitution lowers the transi-
tion temperature [1,3], while the dopant concentration x
4900
remains nearly unchanged [6], there is a positive shift of
the underdoped limit xu, and bd reduces to

bd � 2m
dd

dm
� bxu

� m
dxu

dm
. 0 . (7)

Thus, by approaching the QSI transition bd diverges as
bd ~ d21 [Eq. (6)], and provided that ba remains finite,
bTc is predicted to tend to bd so that

1
bTc

!
1

bd

� r

µ
Tc

Tm
c

∂1�zn

, r �
1

znbxu

µ
Tm

c

a

∂1�zn

.

(8)

Here we expressed d in terms of Tc [Eq. (1)] and rescaled
Tc by Tm

c , the transition temperature at optimum doping, to
reduce variations of Tc between different materials [2,3].

To confront this prediction with experiment we show
in Fig. 2 1�bTc versus Tc�Tm

c for La1.85Sr0.15Cu12xNixO4
[37], YBa22xLaxCu3O7 [38], and Y12xPrxBa2Cu3O7 [39].
As predicted, approaching the QSI transition �Tc�Tm

c �
0�, the data tend to collapse on a straight line, consistent
with the expected exponents zn � 1. It also confirms that
ba is finite and bd � bxu

. 0. In this context it is im-
portant to recognize that the 2D-QSI critical point exhibits
an unexpectedly large critical region. Indeed, the linear
relationship between Tc and 1�l

2
ab�0� [Eq. (3)] holds rea-

sonably well up to Tc�Tm
c 6 0.5 [25,26]. Thus, a 2D-OSI

transition accounts remarkably well for the unusual dop-
ing dependence of bTc . Moreover, the resulting relation
for the maximum transition temperature, Tm

c � rabxu
�

ram dxu�dm �r � 6�, reveals the strong involvement of
lattice degrees of freedom in determining the maximum
transition temperature.

Another important element brought by the QSI transi-
tion in D � 2 is the universal relation given in Eq. (3).
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FIG. 2. Inverse isotope coefficient 1�bTc versus Tc�Tm
c

for La1.85Sr0.15Cu12xNixO4 [37], YBa22xLaxCu3O7 [38], and
Y12xPrxBa2Cu3O7 [39]. The straight line corresponds to
Eq. (8) with zn � 1 and r � 6.
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FIG. 3. Oxygen isotope effect for underdoped
La22xSrxCuO4 [6,7] in terms of 2Tc�DTc ~ 1�bTc versus
2���1�l

2
ab�0�����D���1�l

2
ab�0���� ~ b1�l

2
ab

. The dashed line indicates
the approach to the asymptotic behavior marked by the straight
line [Eq. (10)]. �: taken from [6]; and �: taken from [7].

It implies with Eq. (5) that the isotope coefficients of Tc,
1�l

2
ab , critical amplitudes a and b, and slab thickness ds

are related by

bTc � b1�l
2
ab

1 bds , ba � bb 1 bds , (9)

where bF � 2
m
F

dF
dm and F � Tc, 1�l

2
ab , ds, a, and b.

Noticing that ba was confirmed to be bounded, this is also
true for bb and bds . Since bTc diverges as bTc � bd �
�Tc�Tm

c �21�zn�r [Eq. (8)], b1�l
2
ab

is predicted to approach

bTc � b1�l
2
ab

, (10)

close to the QSI transition. Although the experimental data
for b1�l

2
ab

and bTc on identical samples are rather sparse,
the results shown in Fig. 3 for the oxygen isotope effect in
La22xSrxCuO4 [6,7] reveal considerable consistency with
a crossover to the predicted 2D-QSI criticality. Indeed, as
the underdoped limit is approached, the data points tend to
the solid line, marking 1�bTc � 1�b1�l

2
ab

.
In conclusion, we have shown that a strong doping de-

pendence of the isotope effects on transition temperature
and zero temperature in-plane penetration depth in under-
doped cuprates naturally follows from the doping driven
3D-2D crossover and the 2D-QSI transition in the un-
derdoped limit. As the quantum superconductor to insu-
lator transition is approached, the isotope coefficient of
transition temperature bTc and penetration depth b1�l

2
ab

tend to the coefficient of the relative dopant concentration
bd � bxu

�d. Its divergence sets the scale, controlled by
the shift of the underdoped limit �bxu � m�dxu�dm��. Al-
though the experimental data shown in Figs. 2 and 3 are
rather sparse and do not include the critical regime, they
are fully consistent with the crossover to 2D-QSI critical-
ity. Given the previous evidence for a 2D-QSI transition
[24–26,36] and noting that isotope substitution induces
lattice distortions but does not change the dopant concen-
tration, the resulting empirical relation for the transition
temperature at optimum doping, Tm

c � rabxu
�r � 6�,

clearly reveals the strong involvement of lattice degrees
of freedom in determining the maximum transition tem-
perature. Finally we hope that this novel point of view
about the isotope effects in cuprate superconductors will
stimulate further experimental work to obtain new data to
confirm or refute our predictions.
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