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Coulomb Interaction and Quantum Transport through a Coherent Scatterer
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An interplay between charge discreteness, coherent scattering, and Coulomb interaction yields non-
trivial effects in quantum transport. We derive a real-time effective action and an equivalent quantum
Langevin equation for an arbitrary coherent scatterer and evaluate its current-voltage characteristics in
the presence of interactions. Within our model, at large conductances G0 and low T (but outside the
instanton-dominated regime), the interaction correction to G0 saturates and causes conductance suppres-
sion by a universal factor which depends only on the type of the conductor.
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Coulomb effects in mesoscopic tunnel junctions have
recently received a great deal of attention [1–3]. One
of the remarkable features of such systems is that charge
quantization (and, hence, Coulomb blockade) persists even
for junctions with low resistances 1�Gt ø RQ � h�e2 �
25.8 kV. In this limit an effective Coulomb gap ẼC for a
junction with the “bare” charging energy EC suffers expo-
nential renormalization [4]

ẼC�EC ~ exp�2GtRQ�2� , (1)

but remains finite even at very large values of GtRQ . Equa-
tion (1) was confirmed in several later studies both ana-
lytically [5] and numerically [6]. Experiments [7] clearly
demonstrated the existence of charging effects for the val-
ues of Gt as large as GtRQ � 33.

Recently another interesting prediction was made by
Nazarov [8], who argued that features of charge quanti-
zation may also persist in arbitrary conductors including,
e.g., disordered metallic wires with g � G0RQ ¿ 1. Here
and below G0 � 1�R � �2e2�h�

P
n Tn is the conductance

of an arbitrary scatterer and Tn are the transmissions of its
conducting modes. If one accounts for the spin degeneracy,
the renormalized Coulomb energy for a general conductor
derived in [8] takes the form

ẼC�EC ~
Y
n

Rn , (2)

where Rn � 1 2 Tn. In particular, for diffusive con-
ductors, similarly to Eq. (1), one finds [8,9] ẼC�EC ~

exp�2p2g�8�. The same result (2) follows from the ef-
fective action derived in [2,10] for metallic contacts within
the quasiclassical Green functions technique. Hence, one
can expect the effective actions [2,10] and [8] to be equiva-
lent, perhaps up to some unimportant details.

Equation (2) sets an important energy scale for the prob-
lem in question: at temperatures below an exponentially
small value ẼC a conductor with g ¿ 1 should show in-
sulating behavior due to Coulomb effects. On the other
hand, at larger temperatures/voltages this insulating behav-
ior should not be pronounced. Furthermore, according to
(2) Coulomb blockade is destroyed completely (ẼC � 0)
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even at T � 0 if at least one of the conducting channels is
fully transparent Rn � 0 [11].

In this Letter we analyze an interplay between Coulomb
effects and quantum transport at energies larger than ẼC

(2). We derive a real-time effective action and formulate
a quantum Langevin equation for an arbitrary (albeit rela-
tively short) conductor. At temperatures or voltages above
ẼC we obtain a complete I-V curve at large enough g.
We demonstrate that Coulomb interaction leads to (partial)
conductance suppression with respect to its “noninteract-
ing” value G0. This suppression effect is controlled by the
parameter

b �

P
n Tn�1 2 Tn�P

n Tn
, (3)

well known in the theory of shot noise [12]. The parameter
b (3) equals one for tunnel junctions and 1�3 for diffusive
conductors. In contrast to ẼC (2), it vanishes only if all
the conducting channels are fully transparent.

We identify four different regimes for the interaction
correction to G0. Let us display our results for a linear
conductance G�T �. At T�EC ¿ max�1, g� perturbation
theory in EC (or in 1�T ) is sufficient. It yields

G
G0

� 1 2 b

Ω
EC

3T
2

µ
3z �3�
2p4 g 1

1
15

∂ µ
EC

T

∂2æ
. (4)

Here z �3� � 1.202 and g needs not to be necessarily
large. For g ¿ 1 there exist three further nonperturbative
in the interaction regimes. At intermediate temperatures
gEC exp�2g�2� ø T ø gEC we have

G
G0

� 1 2
2b

g

∑
g 1 1 1 ln

µ
gEC

2p2T

∂∏
, (5)

where g � 0.577. Here energy relaxation plays an im-
portant role turning the power law dependence (4) into a
much slower one (5). At even lower temperatures T ,

gEC exp�2g�2� (but T . ẼC) relaxation processes yield
saturation of G�T �:

G�G0 � 1 2 b 1 O�b�g� . (6)

It is remarkable that the result (6) does not depend on
the charging energy EC at all. In the tunneling limit (all
© 2001 The American Physical Society 4887
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Tn ø 1) the regime (6) does not exist. Two other regimes
are already known for tunnel junctions: by setting b � 1
in Eqs. (4) and (5) we recover the results [13,14]. Finally,
at T , ẼC instanton effects [4,5,8] become important, and
the conductance G should vanish at T � 0. If, how-
ever, the instanton effects are suppressed, then ẼC � 0
and Eq. (6) remains valid down to T � 0.

The model and effective action.—Now let us proceed
with the derivation of the above results and the I-V curve.
We consider an arbitrary scatterer between two big reser-
voirs. Similarly to Ref. [8] the scatterer length is as-
sumed to be shorter than dephasing and inelastic relaxation
lengths, so that phase and energy relaxation may occur
only in the reservoirs and not during scattering. Coulomb
effects in the scatterer region are described by an effective
capacitance C. The charging energy EC � e2�2C, tem-
perature T , as well as other energy scales are assumed to
be smaller than the typical inverse scattering time (e.g., the
Thouless energy in the case of diffusive conductors).

Quantum dynamics of our system is fully described
by the evolution operator on the Keldysh contour. The
kernel of this operator J may be represented as a path
integral over the fermionic fields. Performing a standard
Hubbard-Stratonovich decoupling of the interacting term
in the Hamiltonian enables one to integrate out fermions.
Then the kernel J acquires the form of the path integral
over the Hubbard-Stratonovich fields on the forward (V1)
and backward (V2) parts of the Keldysh contour

J �
Z

DV1 DV2 exp�iS�V �� , (7)

where S�V � is the effective action defined as

iS�V � � 2 Tr ln bG21
V 1 i

C
2

Z t

0
dt0 �V 2

LR1 2V 2
LR2� , (8)

where VLRi � VLi 2 VRi are the voltage drops between
the reservoirs. The Green-Keldysh matrix ĜV �X1,X2�
[here X � �t, r�] obeys the 2 3 2 matrix equation∑

i
≠

≠t1
1̂ 2 bH0�r1�1̂ 1 e bV�X1�

∏ bGV � d�X1 2 X2�ŝz ,

(9)

where bH0�r� is a free electron Hamiltonian for the system
“scatterer 1 reservoirs,” bV is the diagonal 2 3 2 matrix
with the elements Vij � Vidij, and ŝz is the Pauli matrix.
In the last term of Eq. (8) we already made use of our
model and assumed that the fields V1,2 do not depend on
the coordinates inside the reservoirs, i.e., for the left (right)
reservoir we put Vj�t0, r� � VL�R�j�t0�.

In order to proceed we make use of the quantum
Langevin equation approach [15]. In the case of metal-
lic tunnel junction this approach was developed in
Refs. [13,16,17]. Let us define w1,2�t� �

Rt
0 dt

0 eV1,2�t0�
and w1 � �w1 1 w2��2, w2 � w1 2 w2. The key step
is to treat quantum dynamics of the V fields within
the quasiclassical approximation, i.e., to assume that
fluctuations of w2�t� are sufficiently small at all times.
4888
This assumption allows us to expand the exact effective
action in powers of w2 while keeping the full nonlinear
dependence on the “center-of-mass” field w1. This
approximation is known [13,17] to be particularly useful
in the limit g ¿ 1.

Expanding Tr ln bG21
V up to the second order in w2 we

obtain

2 Tr ln bG21
V � 2 Tr ln bG21jw2�0 1 iSR 2 SI , (10)

where

iSR � Tr�� bG11 1 bG22�b�w2

� ,

SI � Tr� bG12
b�w2 bG21

b�w2

� , (11)

and b�w2

is the diagonal matrix with the elements �w2
i dij.

The zero order term in the expansion (10) vanishes. The
elements of the Green-Keldysh matrix bGij depend only on
V1 (or w1) and can be expressed as follows:bG11�t1, t2� � 2iu�t1 2 t2� bU�t1, t2� 1 i bU�t1, 0�br0

bU�0, t2� ,

bG21�t1, t2� � 2i bU�t1, 0� �1̂ 2 br0� bU�0, t2� ,
(12)

and similarly for bG12 and bG22. Here and below integration
over the spatial coordinates is implied in the products of
operators. In (12) we have defined

bU�t1, t2� � T̂ exp

∑
2i

Z t2

t1
dt0 � bH0 2 eV1�t0, r��

∏
(13)

as the evolution operators and br0 is the electron density
matrix at equilibrium.

Next we define the conducting channels in a standard
manner. They are just the transverse quantization modes in
the reservoirs. Describing the longitudinal motion within
one channel quasiclassically we define the free electron
Hamiltonian in the reservoirs as follows:bH0,mn � 2iymdmn

≠

≠y
, (14)

where m, n are the channel indices and ym is the channel
velocity. In every channel the coordinate y runs from 2`

to 0 for the incoming waves, and from 0 to 1` for the
outgoing ones. The scattering matrix bS, which is assumed
here to be energy independent, relates the amplitudes of
incoming and outgoing modes as follows:

cm� y � 10� �
X
n

Smn

q
yn�ym cn� y � 20� , (15)

where Smn are the elements of the scattering matrix bS de-
fined in the basis c0,m � eiky�pym. The factor

p
yn�ym

appears in (15) since we work in the basis of the eigen-
functions of (14) c0,m � eiky . Finally, the matrix ele-
ments of the fluctuating voltages Vj�t� [and, analogously,
phases w

6
j �t�] are Vj,mn�t� � Vj,m�t�dmn, where Vj,m�t� �

VLj�t� for the left channels and Vj,m�t� � VRj�t� for the
right ones.

With the aid of (14) and (15) the evolution operators
(13) can be evaluated exactly. Solving the corresponding
Schrödinger equation and introducing a new coordinate
t � y�yn we obtain
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bU�t2t1; t2t1� � d�t2 2 t1 2 t2 1 t1�eiŵ1�t2�	1̂ 1 u�t2� 3 u�2t1�e2iŵ1�t22t2��bS 2 1̂�eiŵ1�t12t1�
e2iŵ1�t1�, (16)
where eiŵ1

is the diagonal matrix with the elements eiw1
n .

Now we are in a position to derive the effective action.
Evaluating the first order term iSR (11) with the aid of
Eqs. (12) and (16), one finds

iSR � 2
ig
2p

Z t

0
dt0 w2�t0� �w1�t0� . (17)

Here g � 2 tr�t̂1t̂� is the dimensionless conductance of
the scatterer expressed in terms of the transmission matrix
t̂. An analogous calculation of the second order term SI

yields

SI � 2
g

4p2

Z t

0
dt0

Z t

0
dt00 a�t0 2 t00�w2�t0�w2�t00�

3 	b cos�w1�t0� 2 w1�t00�� 1 1 2 b
 , (18)

where bg � 2 tr�t̂1t̂�1 2 t̂1t̂�� and we have defined
a�t� � �pT �2� sinh2�pTt�. The function a�t� is directly
related to the equilibrium density matrix br0. Combining
the results (17) and (18) with the last term of Eq. (8) we
arrive at the final expression for the effective action

iS � i
Z t

0
dt

∑
C
e2

�w1 �w2 1
Ix
e

w2

∏
1 iSR 2 SI .

(19)

In (19) we also included the term which accounts for an
external current bias Ix . The action (17)–(19) has the same
form as one derived within the same approximation for an
effective system of a tunnel junction with the conductance
bG0 shunted by an Ohmic conductor �1 2 b�G0. Note
that this formal analogy allows us to reconstruct the result
(6) without any calculation, since at low T electron tun-
neling across the junction bG0 should be blocked due to
Coulomb effects and the total conductance of such an ef-
fective system should approach �1 2 b�G0.

Quantum Langevin equation.—Equations (17)–(19)
are equivalent to the Langevin equation

C
e

ẅ1 1
1
eR

�w1 2 Ix � j1 cosw1 1 j2 sinw1 1 j3 ,

(20)

where the terms on the right-hand side account for the
current noise. Here jj�t� are Gaussian stochastic variables
defined by the correlators

�jj1,2j
2
v� �

b

R
v coth

v

2T
,

�jj3j
2
v� �

1 2 b

R
v coth

v

2T
.

(21)

In the small transparency limit Eqs. (20) and (21) reduce to
those derived before for metallic tunnel junctions [16,17].
If we decompose w1�t� � eVt 1 dw1 (V is the aver-
age voltage across the conductor), neglect the fluctuating
part of the phase dw1, and define the total fluctuating
current dI�t� � j1 coseVt 1 j2 sineVt 1 j3, we imme-
diately reproduce the well known result for the current
noise in mesoscopic conductors [12]:
�jdIj2v� �
e2

p

Ω
v coth

v

2T

X
n T

2
n 1

1
2

∑
�v 1 eV � coth

v 1 eV
2T

1 �v 2 eV � coth
v 2 eV

2T

∏ X
n Tn�1 2 Tn�

æ
.

This observation as well as the dependence of the inter-
action correction to the conductance on the parameter b

(3), dG � G0 2 G ~ b, makes a close relation between
noise and interaction effects particularly transparent. Inter-
action effects are mostly pronounced for tunnel junctions
b ! 1 and vanish completely for ballistic noiseless sys-
tems b ! 0.

I-V curve.— In order to study the influence of Coulomb
effects on the current-voltage characteristics for an arbi-
trary scatterer we make use of the exact identity

Z
Dw1Dw2i

dS�w1, w2�
dw2�t�

eiS�w1,w2� � 0 . (22)

Evaluating this path integral we set cos�w1�t0� 2

w1�t00�� � cos�eV �t0 2 t00�� in the exponent of (22)
but retain the full nonlinearity in dS�dw2. This
approximation works well provided either g ¿ 1 or
max�T , eV � ¿ EC . A straightforward calculation then
yields
Ix �
V
R

2
eb

p

Z 1`

0
dt a�t�e2F�t��1 2 e2

t

RC � sin�eVt� ,

(23)

F�t� � 2
1
g

Z 1`

2`
dt0 a�t0� �b cos�eVt0� 1 1 2 b�

3 �jt0 2 tj 2 jt0j 1 RC�e2jt02tj�RC 2 e2jt0j�RC�� .

(24)

Equations (23) and (24) represent the central result of this
paper. This result can also be derived directly from the
Langevin equation (20).

Single scatterer.— In the limit g ¿ 1 and
max�eV ,T � ¿ gEC exp�2g�2� the integral in (23)
converges at times for which F�t� is still small and can be
neglected. In this limit Eq. (23) yields

Ix �
V
R

2 ebTIm

∑
wC

µ
1 1

w
2

∂
2 iyC

µ
1 1

iy
2

∂∏
,

(25)
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where C�x� is the digamma function, w � u 1 iy, u �
gEC�p2T , and y � eV�pT . At T ! 0 from (25) we
obtain

R
dIx
dV

� 1 2
b

g
ln

µ
1 1

1
�eVRC�2

∂
, (26)

while in the limit eV�EC ¿ max�1, g� we find

RIx � V 2 be�2C . (27)

For b � 1 the result (26) reduces to that derived in
Ref. [18] for tunnel junctions. Equation (27) demon-
strates that at large V the I-V curve of any relatively short
conductor should be offset by the value be�2C due to
Coulomb effects. For instance, in disordered conductors
this offset is expected to be only 3 times smaller than for
a tunnel junction with the same EC . At V ! 0 from (25)
we get

G�G0 � 1 2
2b

g

∑
g 1 C

µ
1 1

u
2

∂
1

u
2

C0

µ
1 1

u
2

∂∏
,

(28)

which yields Eqs. (4) and (5). [The term with 1�15 in (4)
is recovered from more general Eqs. (23) and (24).]

In the limit max�eV ,T � , gEC exp�2g�2� the integral
(23) converges at very long times and the function F (24)
cannot be disregarded. Evaluating (24) at t ¿ 1�RC we
find F�t� � �2�g� �ln�t�RC� 1 g� and performing the in-
tegral in (23) for g ¿ 1 we arrive at the result (6) G �
�2e2�h�

P
n T

2
n . Hence, at very low T the conductance

G�T � saturates due to Coulomb and relaxation effects. For
diffusive conductors Eq. (6) yields G�G0 � 2�3.

In order to better understand this effect let us recall that
for tunnel junctions with g ¿ 1 the interaction term is
known to nearly fully (up to terms 1�g) compensate G0
at T  gEC exp�2g�2� (Coulomb blockade). At lower T
instanton effects [4,5] gain importance and eventually turn
a conductor into an insulator at T � 0. For a general scat-
terer with b , 1 and g ¿ 1 the interaction effects are re-
duced by the factor b. Hence, at T & gEC exp�2g�2� no
compensation can occur and G can become smaller than
G0 only by the factor 1 2 b. On the other hand, instan-
ton effects [8] (causing further conductance suppression)
are only important at T & ẼC well below gEC exp�2g�2�.
Thus, at ẼC & T & gEC exp�2g�2� one has G�G0 �
1 2 b in agreement with our result (6).

Two scatterers.—The effects discussed here can be con-
veniently measured, e.g., in the “SET transistor” configu-
ration [1,3] of two scatterers connected by a small metallic
island. Each of these scatterers serves as an effective en-
vironment for the other. With simple modifications our
results hold for such two scatterer systems as well. For
instance, in Eqs. (26) and (28) R is now the sum of two
resistances R1 1 R2, u ! �g1 1 g2�EC�p2T and

b�g ! �b1g2 1 b2g1���g1 1 g2�2. (29)
4890
The I-V curve is offset at high voltages as in Eq. (27)
with b ! b1 1 b2 and C being the total capacitance of
the device. Gate modulation and environmental effects are
treated the same way as it was done in Refs. [13,17].

In summary, we studied the effect of Coulomb interac-
tion on the I-V curve of a coherent scatterer. At low T
its conductance is suppressed by the universal factor (6).
Our results emphasize a direct relation between noise and
interaction effects in mesoscopic conductors.

We thank Yu. V. Nazarov and G. Schön for useful
discussions.

Note added.—After this Letter had already been sub-
mitted more works on the subject appeared [19–21]. The
results (5) and (26) fit well to the experimental data [19] for
short diffusive conductors with g � 2000. In the experi-
ments [20] the case g � 10 was realized. The data confirm
our results (26) and (6); both fits yield b � 1�3. In a theo-
retical paper [21] the effect of a linear environment on the
electron transport through a single channel scatterer was
treated perturbatively in the interaction. The result [21]
agrees with our Eqs. (26) and (29) at g2 ¿ g1 * 1 if we
identify RQ�g2 with the environment resistance Rs.
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