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Phase Coexistence during Surface Phase Transitions
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In contrast to standard thermodynamic models, we observe phase coexistence over an extended tem-
perature range at a first-order surface phase transition. We have measured the domain evolution of
the Si(111)-(7 3 7) to (1 3 1) phase transition with temperature, using low-energy electron microscopy.
Comparison with detailed, quantitative theoretical predictions shows that coexistence is due to long-range
elastic and electrostatic domain interactions. Phase coexistence is predicted to be a universal feature of
surface phase transitions.
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One of the most important and fundamental results in
thermodynamics is the Gibbs phase rule. For a single
element at constant temperature and pressure, this rule
states that there can be no coexistence of different phases.
In equilibrium, as the temperature is varied the entire
system changes discontinuously from one phase to the
other. However, this rule does not include the possibility
of long-range interactions. Twenty years ago, Marchenko
suggested that there could be no true first-order phase tran-
sition at a solid surface [1]. Any two surface phases must
have different surface stress, and the resulting elastic in-
teractions have such long range that they preclude a sharp
transition even in the thermodynamic limit. A similar elec-
trostatic interaction arises from the work function differ-
ence of the two phases [2].

Here we present the first quantitative evidence to sup-
port this prediction. We examine the well-known phase
transition of the Si(111) surface from an ordered �7 3 7�
structure to a disordered (“1 3 1”) phase at a temperature
Tc � 1135 K. A key feature of this transition is that phase
coexistence is observed over a broad temperature range
near Tc, a fact that led to debate as to the order of the tran-
sition [3,4] and speculation about the origin of the coex-
istence [5]. Here we measure the actual domain structure
and compare it to the predictions of theory. The results
show conclusively that long-range elastic and electrostatic
interactions are responsible for the phase coexistence. In
addition, we derive a simple expression for the entropy
difference between the phases in terms of measured elec-
tronic and elastic properties of the surface.

Of course, when volume rather than pressure is held
constant in bulk systems, phase coexistence can occur.
There has been confusion about how this applies to sur-
faces [5]. For a surface phase transition, the lattice con-
stants of the two phases are each independently fixed by
the bulk. Therefore, there is no surface analog of constant-
volume phase coexistence.

Images of the Si(111) surface were obtained by low-
energy electron microscopy (LEEM) [6], using 10 eV
electrons reflected specularly from the surface. The micro-
scope used here incorporates a novel 90± magnetic separa-
tor, and is capable of a lateral resolution better than 5 nm
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[7]. The sample temperature was calibrated to the heating
power using an optical pyrometer.

The surface is very slightly misoriented relative to the
(111) atomic planes, giving a staircase of (111) terraces
and atomic steps. Every step on the surface is a phase
boundary, consistent with the fact that the (7 3 7) struc-
ture nucleates at the upper edge of steps [4]. Phase bound-
aries not attached to a step tend to facet along �11̄0�, their
low-energy direction. Thus, we can obtain a simple stripe
geometry by choosing a surface misoriented towards the
�1̄1̄2� direction, so that steps are parallel to the low-energy
phase boundary orientation. Then, as the sample is cooled
slowly from above Tc, a one-dimensional array of parallel
phase boundaries forms (Fig. 1). Each domain is bounded

FIG. 1. Bright-field LEEM image of the Si(111) surface at the
phase transition temperature. The local miscut is towards the
�1̄1̄2� direction so that the steps (which all step up to the right)
are parallel to the low-energy domain boundaries. The (7 3 7)
areas appear brighter than the (1 3 1) areas due to the reflectiv-
ity difference for 10 eV electrons. Phase boundaries are found
alternately at step edges (S) and on the terraces (T). Dark ar-
rows indicate the terrace analyzed in Fig. 2. White arrows show
the orientation of phase boundary force monopoles.
© 2001 The American Physical Society 4871



VOLUME 86, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 21 MAY 2001
by two types of phase boundaries. One phase boundary is
pinned to the �1̄1̄2� step edge (marked “S” in Fig. 1). The
other phase boundary is in the middle of the terrace (“T”)
and does not involve a surface step.

A sequence of images recorded at sample temperatures
near Tc is shown in Fig. 2(a). By imaging both when cool-
ing from above Tc and heating from below Tc, we verify
that the surface structure has equilibrated. As the tem-
perature is raised, the (7 3 7) domains shrink towards the
upper sides of the step edges. The location of the terrace
phase boundaries relative to the steps can be expressed in
terms of the asymmetry parameter p � � 2w

L 2 1�, where
w is the width of the (7 3 7) domain, and L is the ter-
race width (Fig. 1). Complete coverage of the terrace
by (7 3 7) corresponds to p � 11, while p � 21 for
pure (1 3 1). For comparison with theory, it is convenient

FIG. 2. (a) LEEM images of the 310-nm-wide terrace indi-
cated in Fig. 1 for selected temperatures near Tc. Each image is
labeled by the corresponding value of the asymmetry parameter
p. The horizontal dimension of the images is 1.0 mm. (b) Tem-
perature dependence of tan�pp�2� near Tc for the terrace shown
in (a). The slope of the dashed line is 20.12 K21. The solid
curve is a fit to the model described by Eq. (1).
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to plot the quantity tan�pp�2� versus temperature, rather
than p directly. Also, we plot temperature relative to the
temperature T0 ��Tc� at which the domains have equal
widths �p � 0�.

Figure 2(b) shows that near Tc, tan�pp�2� is approxi-
mately proportional to T 2 T0, with a slope of 20.12 K21.
At higher temperatures, where the width of the (7 3 7)
domain is less than about 100 nm [point D in Fig. 2(b)],
p decreases rapidly with T .

The area fractions of the two domains also depend
strongly on the terrace width L. The dependence of
tan�pp�2� on L is shown in Fig. 3 for four temperatures
above Tc. The measurements are made on a region of the
surface where the terrace width changes continuously, but
where the steps and phase boundaries are still parallel.
Despite some scatter in the data, for each temperature
tan�pp�2� is proportional to L over a broad range of
terrace widths.

Any model of the phase coexistence must reproduce
the linear dependence of tan�pp�2� on terrace width and
temperature near p � 0. In addition, the dependence on
terrace size rules out any explanation not involving long-
range interactions.

The nature of the long-range interactions between phase
boundaries (and other line defects such as steps) is well
understood [1,2,8–11]. When two phases have differ-
ent surface stress, the boundary corresponds to a line of
force (a “force monopole”) F � = ? s, where s is the
(two-dimensional) surface stress tensor. In addition, any

FIG. 3. Variation of tan�pp�2� with terrace width computed
from images at four different temperatures above Tc. The inset
is a 3.0 3 0.5 mm image of the surface at T � Tc 1 3 K, il-
lustrating the variation in terrace widths.
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localized defect such as a step will have a “force dipole,”
as well as higher-order multipole moments [11]. The inter-
action between such forces at a surface is a standard result
in elasticity [12]. The orientation of the measured [13]
elastic force monopoles for Si(111) is shown in Fig. 1.

For metals, the electrostatic interactions between phase
boundaries and other defects have the same form, with the
simplification that the tensor surface stress is replaced by
the scalar work function. We approximate the electrostatic
interactions for Si(111) using formulas derived for metals,
since the dielectric constant is large, and the silicon bulk
free carrier density near Tc is large.

Then the energy E per unit area depends on p as

E �
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The constant C0 includes the creation energies of the steps
and phase boundaries. The difference in surface free en-
ergy between the two phases is DS�T 2 Tc�, where we
treat the entropy difference DS between the phases as con-
stant over our temperature range.

Long-range interactions enter through the last three
terms. The term with Cm represents the interaction be-
tween elastic and/or electrostatic monopoles at the phase
boundaries. (The atomic-scale cutoff parameter a is re-
quired for a consistent formulation, but has no effect on p.)
The term with Cd represents the next-longest range in-
teraction in the multipole expansion, that between the
monopoles and the force dipoles at both step and terrace
phase boundaries. The Cr term approximates a short-range
repulsion between the phase boundaries.

In equilibrium, the surface adopts the value of p that
minimizes the energy E in Eq. (1); thus we can obtain
an explicit relationship between p and T by solving
dE�dp � 0. A comparison between the full theory and
experiment is shown in Fig. 2(b), with Cm � 0.31 meV�Å,
Cd � 0.81 eV, and Cr � 8.6 eV Å.

On wide terraces near Tc, the contribution from the Cd

and Cr terms to E�p� is small, and tan�pp�2� is expected
to vary linearly with temperature and terrace width:

tan�pp�2� � 2
LDS

2pCm
�T 2 Tc� . (2)

Thus in Fig. 2(b), the slope of the curve near T � T0
(dashed line) gives a direct measure of the entropy dif-
ference between the two surface phases, relative to Cm.
Within a few degrees of T0 the dependence of tan�pp�2�
on T is linear, with a slope of 20.12 K21. In combina-
tion with an independent determination of Cm, described
below, this provides a measure of the entropy difference
DS, which is a very fundamental but elusive parameter.
Cm includes elastic and electrostatic contributions, Cm �
Cl 1 Cf. The elastic contribution is Cl � �lm�2�1 2

n2��pY , where lm is the difference in surface stress be-
tween the two phases, n is Poisson’s ratio, and Y is Young’s
modulus. The electrostatic interaction may be similarly
described as arising from the difference in the “surface
dipole” between the two phases, Cf � �Df�2�8p2 (in
electrostatic units) [2], where Df is the difference in work
function between the two surface phases. Using transmis-
sion electron microscopy, Twesten and Gibson measured
lm � 30 6 5 meV�Å2, or Cl � 0.28 meV�Å [13]. The
work function difference at Tc can be estimated using
LEEM by observing the transition to total reflection as
the beam energy is lowered. With this technique we find
Df � 0.15 6 0.03 eV, or Cf � 0.02 meV�Å, suggest-
ing that elastic relaxation dominates the interaction be-
tween phases. With these values, the measured slope at
p � 0 corresponds to an entropy difference between the
(1 3 1) and (7 3 7) structures of only 0.011kB��1 3 1�
cell, or a latent heat of 1.1 meV��1 3 1� cell. We must
emphasize that the entropy difference is proportional to
l2

m, and is therefore sensitive to systematic errors in the
measured stress [14].

The small value of DS is perhaps surprising, since one
phase has long-range order and the other does not. A
simple model by Bartelt [15] suggests an entropy of or-
der 0.25kB per cell for the (1 3 1) phase. This entropy
represents the disorder in a

p
3 3

p
3 adatom structure

with about one out of three adatoms missing. The (7 3 7)
phase includes an adatom structure, and its vacancy for-
mation energy is expected to be very similar to that of thep

3 structure [16]; therefore, the adatom vacancy concen-
tration and the entropy should be comparable in the two
phases. Thus the entropy difference between the phases is
expected to be much smaller than the absolute entropy of
either phase.

The value of Cd determined from the fit shown in
Fig. 2(b) can be used to estimate the magnitude of the
force dipoles at the phase boundaries. Specifically, Cd �
Clpld�lm, where ld is the sum of the dipoles at the
step and terrace boundary. The fit corresponds to ld �
25 eV�Å [17]. Despite the seemingly large value of ld , the
contribution to the surface energy from long-range forces
[Eq. (1)] is small. Over the range Tc 2 5 to Tc 1 5 K, the
combined change in surface energy arising from all elastic
effects amounts to less than 1 meV per (1 3 1) cell.

Throughout our analysis we have assumed that there is
one pair of phase boundaries per surface step. This is true
for Si(111) over the range of temperature and step spac-
ing in our experiment. However, it is important to con-
sider also what would happen in the absence of steps. For
instance, on very large terraces, (7 3 7) domains form
a random granular network in which phase boundaries
are not associated with steps. When heated from below
Tc, the (1 3 1) regions appear and broaden between the
(7 3 7) domains, which could be described as domain wall
4873



VOLUME 86, NUMBER 21 P H Y S I C A L R E V I E W L E T T E R S 21 MAY 2001
premelting. Very similar observations were made by Feen-
stra et al. in a study of the Ge(111)-c�2 3 8� to (1 3 1)
phase transition [18].

For a step-free surface, and neglecting any possible force
dipoles at the phase boundaries, the equilibrium structure
is determined by simultaneously minimizing Eq. (1) with
respect to L and p. Again, the result is phase coexistence
over a finite temperature range centered on Tc. Within this
range, the equilibrium spacing of domains (the periodicity)
is

L �

∑µ
1

Lmin

∂2

2

µ
DS�T 2 Tc�

2pCm

∂2∏21�2

, (3)

where the minimum period Lmin � aep exp�Cb�Cm� oc-
curs at Tc, and Cb is the terrace domain boundary creation
energy.

This provides a natural explanation for phase coexis-
tence on large, step-free terraces, and for its manifestation
as domain boundary premelting. As the system is cooled
below Tc, the ordered domain size grows until the system
eventually falls out of equilibrium; and below the coexis-
tence range the disordered regions disappear, leaving only
domain boundaries. Upon heating, the disordered phase
first appears at these domain boundaries. However, this is
fundamentally different from classical boundary premelt-
ing, because in equilibrium the disordered phase would ap-
pear even without preexisting domain boundaries. While
Eq. (3) was derived for a one-dimensional array of do-
mains, similar behavior is expected for two-dimensional
arrays [19].

In conclusion, we have shown that long-range interac-
tions lead to surface phase coexistence over a range of tem-
perature. Measurements of domain evolution for Si(111)
are in quantitative agreement with theory, and provide a
measure of the latent heat of the transition. The same ef-
fects explain previous observations of surface phase coex-
istence in other systems, confirming the universal nature
of the phenomenon.
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