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Effect of a Rippling Mode on Resonances of Carbon Nanotubes
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A recent study determined the Young’s modulus of carbon nanotubes by measuring resonance fre-
quency and using the modulus-frequency relation resulting from the linear vibration theory. It leads to
the report that the Young’s modulus decreases sharply, from about 1 to 0.1 TPa with the diameter D
increasing from 8 to 40 nanometers, and the investigators attributed this decrease to the emergence of an
unusual bending mode during the measurement that corresponds to rippling on the inner arc of the bent
nanotubes. The nonlinear analysis presented in this paper that captures the rippling mode suggests that
the effective Young’s modulus can indeed decrease substantially with increasing diameter, and that the
results from the classical linear theory may be invalid in such measurements.
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Carbon nanotubes have been predicted to have interest-
ing mechanical properties, such as an estimated Young’s
modulus �E� of 1.8 TPa [1], and this phenomenon is
attributed to their seamless cylindrical graphitic structures
[2–6]. Such predictions and their potential applications
[7] have led to many investigations on measurements of
mechanical properties of nanotubes, using techniques such
as transmission electron microscopy (TEM) [1,8,9] and
atomic force microscopy [10,11]. All of these measure-
ments [1,8–11] are indirect because the small dimensions
of these nanotubes have made it extremely difficult to
measure their mechanical properties directly [3]. For
example, Treacy et al. [1] measured the amplitudes of
intrinsic thermal vibration of cantilevered multiwalled
nanotubes, and this leads to the energy associated with
each of the vibration modes predicted by the linear
vibration analysis of cantilevered beams. They then
estimated the Young’s modulus E of 1.8 TPa through sta-
tistical analysis. Following the same approach, Krishnan
et al. [8] obtained the Young’s modulus E of 1.25 TPa for
single-walled nanotubes. Wong et al. [10] measured the
dependence of deflection of a cantilevered nanotube upon
an external force applied at different locations along the
nanotube, and they then obtained the Young’s modulus
of 1.28 6 0.59 TPa by fitting their data with a force-
deflection relation resulting from the linear analysis of
cantilevered beams. Salvetat et al. [11] measured the
variation of deflection of a suspended nanotube spanning
over a hole in response to a force acting at the middle
point of the nanotube, and they obtained Young’s modu-
lus of 8101410

2160 GPa, using a force-deflection relation
of the linear theory for simply supported beams. Re-
cently, Poncharal et al. [9] measured the fundamental
resonance frequency V0 of arc-produced multiwalled
carbon nanotubes induced by an electric field in TEM
and they then calculated E using the following rela-
tion resulting from the linear analysis of cantilevered
beams:
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where L, A, I , and r are, respectively, the length, the
cross-sectional area, the moment of inertia of the cross
section, and the mass density of the beam. To their credit,
Poncharal et al. have cautioned the readers by calling E
the elastic bending modulus. The Vn, n � 0, 1, 2, . . . ,
are the resonance frequencies and vn are the roots of
the equation cos

p
vn cosh

p
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v0 � 3.516, corresponds to the fundamental mode of
vibration. Poncharal et al. [9] reported that their calcu-
lated E was found to decrease sharply, from about 1 to
0.1 TPa with the diameter D increasing from 8 to 40
nanometers, and they attributed this decrease to the emer-
gence of another bending mode that corresponds to the
wavelike distortion or ripple on the inner arc of the bent
nanotube, observed for thick nanotubes by Poncharal
et al. [9] and previously, by Ruoff and Lorents [12] and
Kuzumaki et al. [13]. The frequency-modulus relation
Eq. (1), resulting from the linear vibration theory, has
played a very important role in determining E using the
measured V0, and it is, however, well known that the linear
theory is valid only for infinitesimally small bending de-
formations and that it leads to no solutions corresponding
to a rippling mode. We note that this rippling mode is dis-
tinct from another unusual behavior of carbon nanotubes
involving nonlinear deformations, i.e., reversible buckling
which has been studied by a number of investigators, e.g.,
[14,15]. To examine the effect of the rippling mode on E,
we present a nonlinear vibration analysis that takes into
account the relatively large deformation corresponding to
rippling.

According to the beam theory, the bending moment
M�x, t� and the beam deflection function w�x, t� are re-
lated by the following equation:

M 00 1 2m �w 1 rAẅ � F , (2)
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where m denotes the damping coefficient, F�x, t� the ap-
plied load measured per unit length, and w0 and �w the par-
tial derivatives ≠w�x, t��≠x and ≠w�x, t��≠t, respectively.
M�x, t� is constitutively related to the bending curvature
k � w00��1 1 �w0�2�3�2 which is approximated by w00 in
the linear theory. The linear theory of elasticity leads to
M � EIw00, and with this relation, Eq. (2) leads to the
resonance frequencies given by Eq. (1) for the cantilevered
beam. For very small bending deformations, the linear the-
ory provides a fairly good approximation. Considering the
relatively and locally large deformation corresponding to
the rippling configuration of the nanotube, we are inter-
ested in the effect of the higher order terms in the consti-
tutive relation on the resonance frequency relation to the
Young’s modulus. This requires us to obtain a nonlinear
relation between M�x, t� and k using the theory of finite
elasticity, and substituting this relation into Eq. (2) leads
to a nonlinear differential equation governing the deflec-
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tion function w�x, t�. We then derive the resonance fre-
quency relation to the Young’s modulus from the nonlinear
governing equation. Our analysis indicates that Eq. (1) is
still valid if we replace the Young’s modulus E by a pa-
rameter Eeff, called the effective modulus, and that Eeff
can decrease sharply relative to E when the rippling mode
emerges.

The task of obtaining the nonlinear constitutive bend-
ing relation from the full three-dimensional theory of
finite elasticity is overwhelmingly complex because of
the large deformation and the material anisotropy
of carbon. For simplicity, we consider a carbon nanobeam
of a rectangular cross section bent in the x-y plane in
the Cartesian coordinate system in which the x axis
is along the beam central axis, and the z axis is per-
pendicular to the bending plane. We assume that the
graphite base plane is parallel to the x-z plane and cor-
respondingly, the stress-strain relation [16,17] is given as
follows:
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where the values of the moduli are given in pascal (Pa).
To seek a pure bending solution, we assume that all the
nonzero stresses are within the bending plane. We used
a commercial finite element code ABAQUS to search for a
rippling configuration. Considering the occurrence of the
relatively large deformation associated with the rippling
mode, we have used the Green strains of finite elasticity
[18] in Eq. (3), instead of the infinitesimal strains. We note
that the higher order material moduli are unavailable in
the literature [17]. For the normalized curvature hk large
enough, our numerical analysis leads to a solution corre-
sponding to a rippling configuration, and Fig. 1 presents
a typical rippling configuration we obtained. We plot in
Fig. 2 the bending moment M versus the normalized bend-
ing curvature hk at each loading step for the above sample
beams of the length-to-height ratios L�h � 10, 15, and
20. It would be natural for us to use the same aspect ra-
tio as that of the experimental samples [9] which is about
500. Performing the finite element analysis for such slim
samples (L�h � 500) is, however, extremely challenging
because the elements in our finite element mesh must have
dimensions significantly smaller than the spatial period of

x
y

FIG. 1. Rippling of a nanobeam under pure bending simulated
with ABAQUS.
rippling, which is a fraction of h, and because our focus on
the nonlinearity effect requires a time-consuming iteration
process to search for the rippling configuration. Theoreti-
cally, such a slim sample beam can be well represented
by a portion of the beam for the purpose of studying the
curvature response to the moment, so long as the length
of this portion is an integer multiple of the rippling spatial
period, thanks to the pure bending condition under which
the bending moment on each cross section is the same
and the beam’s neutral axis has a constant curvature. Be-
cause the rippling period is not predetermined in the finite
element analysis, we have used the trial-error method to
minimize the sensitivity of our numerical solution to the
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FIG. 2. Nonlinear relation between bending moment and cur-
vature (with h � 1).
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length of the selected sample portion by varying the aspect
ratio. It is seen from Fig. 1 that the rippling period is about
one-fourth of the beam height h and correspondingly, the
sample length is approximately an integer multiple of the
rippling period for L�h � 10, 15, and 20.

Noting that M must be an odd function of k, we fit the
discrete points in Fig. 2 by a polynomial up to the ninth
order and we obtain

M � EIk�1 2 a3h2k2 1 a5h4k4 2 a7h6k6

1 a9h8k8� , (4)

with a3 � 1.017 3 103, a5 � 7.995 3 105, a7 �
3.170 3 108, and a9 � 4.813 3 1010. This serves as an
approximated relation between M and k. Substituting this
relation into Eq. (2) yields the following nonlinear partial
differential equation:

w0000 1 2m �w 1 ẅ � N 1 F , (5)

with

N � 3a3�h�L�2�2w00�w000�2 1 �w00�2w0000�

1 g�2�w00�3 1 6w0w00w000 1 �w0�2w0000� . (6)

In deriving the above, we have approximated the curva-
ture k by w00�1 2 g�w0�2� with g � 3�2. We have made
all the variables in Eqs. (5) and (6) dimensionless by us-
ing the characteristic length L, time L2

p
rA�EI , and force

EI�L3. We assume that all the spatial derivatives of w
are of the same order as w itself and we drop the terms
of the fifth order and higher in Eq. (6). We are interested
in the steady-state solution of Eq. (5) with the boundary
conditions for a cantilevered beam: w�0, t� � w0�0, t� � 0
and M�1, t� � M 0�1, t� � 0 and with a harmonic excita-
tion force F. In their experiment [9], the nanotubes were
driven to vibrate at the fundamental resonance. We write
F�x, t� � K�x� cos�√t� and we expect that the nonlin-
earity may cause the resonance frequency √ to deviate
slightly from v0.

To determine the resonance frequency √ using the per-
turbation method of multiscales [19] for the nonlinear os-
cillations, we zoom in w in the form w � ´u, where ´

is a small perturbation parameter. Noting that nonlinear
term N is of the third order in w, we write m � ´2n and
K�x� � ´3k�x�, so that the driving force F and the damp-
ing force 2m �w are both of the same order as the nonlinear
term N . Consequently, the nonlinear oscillation equation
becomes

u0000 1 2n´2 �u 1 ü � ´2f�u� 1 ´2k cos�√t� . (7)

We expand u�x, t� and k�x� as follows:

u�x, t� �
X̀
n�0

un�t�fn�x�, k�x� �
X̀
n�0

knfn�x� , (8)

where fn for n � 0, 1, 2, . . . are the normalized mode
functions of the cantilevered beam from the linear vibration
analysis and they form a complete and orthogonal basis
[20]. Using the perturbation method of multiscales [19],
we show that all modes with respect to um, except for the
fundamental one, will be damped out. This leads to the
following equation governing the steady-state solution:

ü0 1 2n´2 �u0 1 v2
0u0 � a´2u3

0 1 k0´2 cos�√t� , (9)

where
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b2 �
Z 1

0
f0�v2

0f0�f0
0�2 1 6f0

0f00
0 f000

0 1 2�f00
0 �3� dx � 1.048 , (10)

a � 3a3�h�L�2b1 1 gb2 � �604.1h�L�2 1 1.048g .
Noting that Eq. (9) is a standard third-order nonlinear os-
cillation equation [19], we obtain the fundamental reso-
nance

√ � v0 2 s´2, s �
3a

8v0

µ
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. (11)

The fundamental resonance frequency V0 with the physi-
cal dimension is given by
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v0
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in which the mode loading parameter K0 � ´3k0. The ef-
fect of the higher order term 2gw00�w0�2 in the approxi-
mated expression of curvature k is represented by the
factor b2 � 1.048, and it is evident from the expression
of a, the third equation in (10), that this effect is neg-
ligible only for beams of aspect ratio L�h ø 480.

Comparing (12) with (1), we conclude that, in the pres-
ence of rippling, one would obtain the effective Young’s
modulus Eeff, instead of the actual Young’s modulus E,
if he uses Eq. (1) with a measured resonance frequency.
This suggests that one should be particularly cautious in
using the results of the linear theory. Equation (13) in-
dicates that Eeff decreases with increasing ratio �h�L�,
and with increasing loading-to-damping ratio K0�m, as
expected from a nonlinear theory. A quantitative com-
parison with the measured data [9] is, however, not pos-
sible at this point due to a lack of information required.
In the experiment [9], the electric loading was adjusted
in each test to maximize the vibration amplitude of each
individual nanotube, and the magnitudes of the electrical
4845
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FIG. 3. Effective Young’s modulus decreases with the increas-
ing height of nanobeams.

loading were not recorded [21]. Furthermore, the length
L was reported only for a very few groups of samples.
Nevertheless, this analysis does indicate that the effective
Young’s modulus Eeff can drop sharply as the rippling
mode emerges. To illustrate this point, we have esti-
mated that K0�m � 15.80 for a group of samples: D �
14.5 nm, L � 6.25 3 103 nm, and Eeff � 0.21 TPa, for
which Poncharal et al. [9] observed the rippling mode, and
we have plotted in Fig. 3 Eeff versus h near h � 14.5 nm
for given L � 6.25 3 103 nm and K0�m � 15.80. We
note that other factors that contribute to uncertainties in
measuring mechanical moduli based on the vibration char-
acteristics of carbon nanotubes include the inhomogene-
ity nature of the multiwalled carbon nanotubes and the
anisotropy associated with their helic structure which both
vary from one sample to another [22]. Using a static tensile
testing, Yu et al. [23] have obtained E of multiwalled car-
bon nanotubes ranging, respectively, from 270 to 950 GPa
if the tensile load is assumed to be taken only by the out-
ermost layer and from 18 to 68 GPa if all the layers are
assumed to participate equally in carrying the load. Yu
et al. [24] have observed an unusual configuration of the
outermost layer of some broken samples that appears as the
rippling bending mode discussed here and they acknowl-
edged the possibility that their nanotubes were not per-
fectly aligned.
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