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Projecting the Kondo Effect: Theory of the Quantum Mirage
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A microscopic theory is developed for the projection (quantum mirage) of the Kondo resonance from
one focus of an elliptic quantum corral to the other focus. The quantum mirage is shown to be indepen-
dent of the size and the shape of the ellipse, and experiences lF�4 oscillations (lF is the surface-band
Fermi wavelength) with an increasing semimajor axis length. We predict an oscillatory behavior of the
mirage as a function of a weak magnetic field applied perpendicular to the sample.
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In a recent experiment, Manoharan et al. [1] used an
elliptic quantum corral to project the image of a Kondo
resonance over a distance of tens of angstroms, from one
focus of the ellipse to the other focus. By placing a mag-
netic Co atom at one focus of the ellipse and measuring the
tunneling current to a close-by scanning tunneling micro-
scope (STM) tip, a distinctive Kondo resonance was seen
in the I-V curve when the tip was brought directly above
the Co adatom. Remarkably, a similar Kondo signature
was observed when the tip was placed above the empty
focus, indicating coherent refocusing of the spectral image
by the surrounding corral. This should be contrasted with
STM measurements of isolated magnetic adatoms on open
surfaces [2,3], where a limited spatial extent of �10 Å was
observed for the Kondo resonance.

Semiclassically, one can attribute this refocusing phe-
nomena to the property that all classical paths leaving one
focus of the ellipse bounce specularly off the perimeter
and converge onto the second focus with the same acquired
phase [1] (see Fig. 1). However, this simple picture does
not explain the quantitative features of the experiment. For
example, the complex interference patterns in the dI�dV
difference map throughout the ellipse, or the lF�4 oscil-
lations of the mirage with an increasing semimajor axis
length a (lF is the Fermi wavelength). Explanation of
these features requires a quantitative theory, which is the
objective of the present Letter.

Starting with a microscopic picture of Kondo scattering
off the Co adatoms we obtain good qualitative and quan-
titative agreement with the experiment. We establish a re-
markable feature of the quantum mirage which, aside from
the lF�4 oscillations mentioned above, is independent of
the size and the shape of the ellipse, provided the ellipse
is not too small. In particular, there is no dependence on
the ellipse eccentricity E ; see Fig. 1. In the presence of a
weak perpendicular magnetic field, we predict an oscilla-
tory behavior of the quantum mirage as a function of the
magnetic flux encircled by the ellipse.

The Cu(111) surface has a band of surface states, which
acts as a two-dimensional electron gas. The surface band
starts 450 meV below the Fermi energy, and has a Fermi
wave number of k21

F � 4.75 Å. When a Co adatom is
0031-9007�01�86(3)�484(4)$15.00
placed on the surface, it scatters both the surface electrons
and the underlying bulk electrons. As recently shown by
Újsághy et al. [4] for Co on Au(111), one may model the
Co adatom by an effective nondegenerate Anderson impu-
rity [5], characterized by an effective energy level ed , an
on-site repulsionU, and two hybridization matrix elements
ts and tb to the underlying surface and bulk conduction
electrons. In this manner, each of the Co atoms forming
the ellipse in the experiment of Manoharan et al. [1] acts
as an Anderson impurity, as does the adatom placed inside
the ellipse.

Denoting the creation of a surface-state and a bulk
conduction electron by c

y
�ks

and a
y
�qs , respectively (here �k

labels a two-dimensional surface vector while �q is a
three-dimensional vector), we model the system by the
Hamiltonian H � Hsurf 1 Hbulk 1
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describe the free surface and bulk conduction bands, re-
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FIG. 1. An illustration of an elliptic quantum corral and the
classical trajectories associated with the quantum mirage. The
ellipse is characterized by a semimajor axis length a and an
eccentricity E . The mean distance between adjacent atoms
forming the ellipse perimeter is d.
© 2001 The American Physical Society
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describes a Co adatom at point �Ri on the surface. Here
d
y
is creates a localized Co electron at site �Ri (i � 0 for the

inner adatom and i � 1, . . . ,N for the perimeter adatoms),
while cs� �Ri� and xs� �Ri� annihilate, respectively, a surface
and a bulk conduction electron at site �Ri . For simplicity,
we have taken the different adatoms to be identical, and
neglected any momentum dependence of ts and tb . In what
follows, we shall mainly be interested in the case where the
inner adatom is located at the left focus, i.e., �R0 � 2 �R in
the notations of Fig. 1.

Consider now an STM tip placed directly above the sur-
face point �r. If the tip couples predominantly to the un-
derlying surface-state electrons at �r , then the differential
conductance for the current through the STM tip measures,
up to thermal broadening, the local surface-electron den-
sity of states at point �r , r��r , e�. For an isolated Co im-
purity, r��r , e� depends on the Kondo scattering from the
impurity as described, e.g., in Ref. [6]. For the multi-
ple-impurity configuration considered here there are two
main modifications: (i) There are multiple scatterings off
the different Co adatoms. (ii) Intersite correlations alter the
Kondo scattering off each Co adatom. Because of the rela-
tively large distance between Co atoms (�10 Å for neigh-
boring atoms on the ellipse perimeter), we expect the latter
effect to be small, and therefore neglect it hereafter.

Since we are mostly interested in the effect of the Co
atom placed inside the ellipse, we distinguish it from the
other Co atoms on the perimeter of the ellipse. Neglect-
ing intersite correlations, r��r, e� takes the form r��r , e� �
r̄��r , e� 1 dr��r , e�, where

r̄��r , e� � 2
1
p

Im�G��r , �r; e�� (1)

is the density of states of an empty ellipse (i.e., in the
absence of the inner adatom), and

dr��r , e� � 2
1
p

Im�t2sG��r , �R0; e�Gd�e�G� �R0, �r; e��

(2)

is the additional contribution due to the extra Co atom at
�R0. Here G��r, �r 0; e� is the retarded Green function of the
surface electrons for an empty ellipse, and Gd�e� is the
fully dressed retarded Green function of the d electrons of
the inner adatom. Note that in writing Eq. (2) we have
assumed that the three-dimensional propagation of bulk
electrons between different Co sites on the surface is small
compared to the two-dimensional propagation of the sur-
face electrons. This assumption is quite reasonable con-
sidering that the three-dimensional propagation near the
surface decays as 1�r2, compared to 1�

p
r for the two-

dimensional surface propagation [7].
Experimentally, dr��r , e� is extracted by first measuring

the local density of states of the empty ellipse, and then
subtracting it from the measured density of states with
the extra Co atom. To compute dr��r , e�, one needs to
evaluateG��r , �r 0; e�, which is our next goal. To this end, we
introduce the N 3 N matrix gij � �1 2 di,j�G0� �Ri , �Rj�,
along with the two vector quantities, yi � G0��r , �Ri�
and ui � G0� �Ri , �r 0�. Here G0��r , �r 0� is the free surface
Green function without the corral, and i and j run over
1, . . . ,N . Using these quantities, G��r , �r 0; e� is compactly
expressed as

G��r , �r 0; e� � G0��r, �r 0� 1

NX
i,j�1

yi

∑
1

1 2 Tg
T

∏
ij
uj , (3)

where T �e� � t2sGd�e� is the surface-to-surface compo-
nent of the conduction-electron scattering T matrix at each
Co site. Again, Eq. (3) omits the intersite correlations and
the bulk propagation between different Co sites. Finally,
for temperatures and energies below the Kondo tempera-
ture, the Kondo part of Gd�e� may be well approximated
[8] by the Lorentzian form ZK��e 2 eF 1 iTK �, where
TK is the Kondo temperature, eF is the Fermi energy, and

ZK �
TK

prst2s 1 prbt
2
b

(4)

is the corresponding weight. Here rs and rb are the sur-
face and bulk density of states at the Fermi level.

A key parameter that enters the quantum mirage is the
ratio of scattering rates

t �
prst2s

prst2s 1 prbt
2
b

. (5)

Physically, t represents the probability that a surface-state
electron impinging on a Co adatom will be scattered to a
surface-state electron rather than a bulk electron. Hence t
is a measure of the inelasticity of the scattering of sur-
face waves from the Co impurities. In the theory of
Heller et al. [9] for the standing waves formed in a quan-
tum corral, t is found to be 1�2. Hereafter we shall use
the same value for t.

In Fig. 2 we depict dr��r, eF� for various configurations
of the Co atoms, as measured by Manoharan et al. [1].
The upper panels correspond to an ellipse with eccentricity
E � 0.786 and 34 adatoms (ellipse b of Ref. [1]), while
the lower panels correspond to an ellipse with eccentric-
ity E � 0.5 and 36 adatoms (ellipse a in Ref. [1]). The
quantum mirage is clearly seen in each of the left two pan-
els, where an additional adatom has been placed at the left
focus of the ellipse. For both ellipses, there is a strong sig-
nal in the tunneling density of states right above the right
focus, in accordance with the experimental data. By con-
trast, the quantum mirage disappears when the additional
adatom is placed off the focus, as shown in the right two
panels. These results are in good agreement with the ex-
perimental measurements, reproducing even fine details of
the experimental patterns.

The results of Fig. 2 were obtained from Eqs. (2) and
(3), by setting t � 1�2 and approximating G0 with the
485
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FIG. 2. Contour plot of dr��r , eF� at the Fermi level assuming
t � 1�2. The upper panels correspond to an ellipse with ec-
centricity E � 0.786 and 34 adatoms, while the lower panels
correspond to an ellipse with E � 0.5 and 36 adatoms. For both
ellipses, a strong signal appears at the right focus of the ellipse
when an additional adatom has been placed at the left focus.
This quantum mirage disappears when the additional adatom is
placed off the focus, as shown in the right two panels.

free two-dimensional Green function:

G0��r , �r 0� � 2iprsH
�1�
0 �kj�r 2 �r 0j� . (6)

Here k is the wave number, andH
�1�
0 �x� is the Hankel func-

tion of zeroth order, which for x ¿ 1 takes the asymptotic
form

H
�1�
0 �x� �

s
2

px
exp

µ
ix 2 i

p

4

∂
. (7)

The good agreement between our calculations with t �
1�2 and the experimental data indicates that the number
of scattering events that a particle undergoes before leav-
ing the surface bounded by the ellipse is small. This sug-
gests the possibility of calculating the quantum mirage at
the right focus at the Fermi level, dr� �R, eF�, using per-
turbation theory in t. Thus, to linear order in t, the Green
function between the left and the right foci is given by

G�2 �R, �R; eF� � G0�2 �R, �R� 1 G1�2 �R, �R� 1 . . . , (8)

where

G0�2 �R, �R� � 2irs

r
p

E kFa
ei2E kFa2i�p�4� (9)

is the contribution of the direct path connecting the two
foci (illustrated by the dashed line in Fig. 1), and

G1�2 �R, �R� �
t

iprs

NX
j�1

G0�2 �R, �Rj�G0� �Rj , �R� (10)

comes from all trajectories which scatter from a single Co
adatom on the ellipse perimeter (solid lines in Fig. 1).

Conventionally, the second term G1 is smaller than G0
for several reasons. First, each scattering event is inelastic,
486
and therefore introduces a reduction factor of t. Second,
the scattered orbits are longer. Third, the various orbits
have generally different lengths, and therefore their cor-
responding phases add up incoherently. The situation is
quite different in the present case. Because of the defining
property of the ellipse, the length of all scattered orbits be-
tween the two foci is precisely the same, and hence their
contributions add up coherently. Consequently, the second
term in Eq. (8) takes the form

G1�2 �R, �R� � irs
NX
j�1

2t
kF

p
j1,jj2,j

ei2kFa2i�p�2�, (11)

where 2a is the length of each orbit, and j1,j and j2,j are
the distances between the impurity at �Rj and the right and
left foci, respectively (see Fig. 1). Finally, we approximate
the sum in Eq. (11) by an integral,

NX
j�1

1p
j1,jj2,j

�
1
d

I
ds

1p
j1�s�j2�s�

, (12)

where s denotes the coordinate along the ellipse contour,
and d is the mean distance between adjacent adatoms. The
result of the integral is independent of the eccentricity of
the ellipse, and is simply 2p. Thus, the contribution of
orbits scattered from a single perimeter adatom is

G1�2 �R, �R� � rs
4pt
kFd

ei2kFa. (13)

Comparing G0�2 �R, �R� and G1�2 �R, �R� at the Fermi en-
ergy, one sees that the leading contribution to the quantum
mirage comes from G1 [10], provided

d
Ea

ø
16pt2

kFd
. (14)

Substituting the experimental parameters, d � 10 Å, a �
70 Å, and kF � 1�4.75 Å21, and setting t � 1�2, it is
straightforward to verify that Eq. (14) holds for all ellipses
with eccentricity 0.05 , E , 1. Furthermore, Eq. (14)
is always satisfied for sufficiently large ellipses, provided
the mean distance between adjacent adatoms is kept fixed
(a ¿ d).

Neglecting the contribution of the direct path,
G0�2 �R, �R�, and using Eqs. (2) and (13) with �r � �R, the
resulting local density of states at the Fermi energy takes
the form

dr� �R, eF� � rs
16t3

�kFd�2 cos�4kFa� . (15)

The main feature of the above result is the robustness of
the quantum mirage: As long as condition (14) is satisfied,
the amplitude of the mirage is independent of the size of the
ellipse, a, and its eccentricity, E . Rather, the amplitude
is determined by t, which characterizes the inelasticity
of the scattering of surface waves from adatoms, and the
dimensionless mean distance between adjacent adatoms
along the ellipse, kFd. The oscillations of the mirage as a
function of a are indeed periodic with a period of lF�4,
as seen experimentally [1].
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Next we consider the effect of a weak uniform magnetic
field, B, applied perpendicular to the surface. As shown
below, the quantum mirage experiences a distinctive oscil-
latory behavior as a function of the magnetic field, which
depends on the size and the shape of the ellipse. Here
we assume that the ellipse is sufficiently large and that the
magnetic field is sufficiently weak so that (i) Zeeman split-
ting of the Kondo resonance can be neglected, and (ii) the
cyclotron radius of the conduction electrons is much larger
than the ellipse size.

Under these circumstances, the main effect of the mag-
netic field is to introduce an additional Aharonov-Bohm
phase to the contribution of each path. This phase is the
magnetic flux encircled by the orbit, measured in units
of the quantum flux, f0 � hc�e. Here h is Planck’s
constant, c is the velocity of light, and e is the electron
charge. To compute G1�2 �R, �R� we fix the gauge by
calculating the flux encircled by the path which goes from
�R to �Rj , to 2 �R, and then back to �R along the semimajor
axis of the ellipse. Accordingly, the sum of Eq. (11) is
modified to

P
j�j1,jj2,j�21�2ei2pwj�f0 , where wj is the

flux of each trajectory. Using the continuum approxi-
mation of Eq. (12) this sum gives 2pJ0�2EAB�f0�,
where J0�x� is the Bessel function of zeroth order, and
A � pa2

p
1 2 E 2 is the area of the ellipse. The

quantum mirage is, thus, modified according to

dr�B� � dr�0�J2
0

µ
2E

AB
f0

∂
, (16)

where dr�0� is the zero-field result of Eq. (15). Note that,
for a given a, the sensitivity to a magnetic field is largest
for E � 1�

p
2.

Finally, we discuss the role of imperfections in the el-
lipse. Clearly, a combined effect of many coherent trajec-
tories is very sensitive to imperfections and dephasing. At
4 K, dephasing effects due to electron-electron and
electron-phonon interactions are negligible over distances
of the order of hundreds of angstroms. In what follows
we show that the effect of imperfections is small too.

The main source of imperfections in the ellipse comes
from the position of the adatoms forming the ellipse. These
are constrained to sit on a triangular lattice imposed by the
underlying Cu(111) surface. Consequently, the lengths of
the orbits contributing to dr are not those of an ideal el-
lipse. To estimate the effect of the deviations, we consider
a random distribution of the trajectory lengths, and average
over the distribution. We first notice that each contribution
to dr is composed of four segments, j1, j2, j3, and j4, as
illustrated in Fig. 1. Each of these segments is regarded as
an independent random variable uniformly distributed in
the range �j 2 b�2, j 2 b�2�, where j is the exact dis-
tance from the focus to the ellipse boundary, and b is the
triangular lattice spacing. The total length h �

P
n�1,4 jn

is, therefore, approximately a Gaussian random variable
with mean 4a and variance b2�3. Averaging the co-
sine term in Eq. (15), 	cos�kFh�
, the disorder-averaged
value of the quantum mirage is reduced by a factor of
approximately Q � exp�2k2

Fb2�6�. Substituting the ex-
perimental values kF � 1�4.75 Å21 and b � 2.55 Å, one
finds Q � 0.95, meaning that the effect of imperfections
is negligible.

In conclusion, in this Letter we have studied the phe-
nomenon of quantum mirage, and clarified its relation to
the classical orbits of a particle in an ellipse. Our the-
ory also predicts a distinctive behavior of the quantum
mirage in the presence of a perpendicular magnetic field,
which could be tested experimentally. Finally, our ap-
proach clearly shows that the phenomenon of quantum mi-
rage is not unique to magnetic adatoms. It will also appear
for nonmagnetic atoms (on the ellipse perimeter or at its
focus) with strong scattering, e.g., adatoms with resonant
tunneling states at the Fermi level.
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