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The world is apparently four dimensional. But it is pos-
sible that at distances shorter than those yet probed the
Universe may best be described by a theory with more than
the conventional one time and three space coordinates. A
simple model of such extra dimensions is a theory of fields
living on a spacetime with four extended dimensions, plus
one or more additional compact dimensions. At distances
large compared to the size of these compact dimensions,
such a theory appears four dimensional: gauge forces fall
off like the square of the distance, free energies of mass-
less degrees of freedom scale like the fourth power of the
temperature, etc. At energies corresponding to the inverse
compactification size, Kaluza-Klein (KK) excitations ap-
pear with a spectrum dictated by the detailed nature of
the compact space. At energies much higher than this
scale, the extra dimensions become manifest: physics at
distances small compared to the compactification size is
insensitive to the compactification, and the theory appears
higher dimensional.

Unfortunately these higher-dimensional field theories
have dimensionful couplings and therefore require a cutoff.
As energies approach this cutoff, physics depends sensi-
tively on the cutoff procedure, typically becoming strongly
coupled. This makes it difficult to address what happens
at energies above the cutoff. Indeed, quantum gravity in
four dimensions is challenging for similar reasons. Never-
theless, a few UV completions of higher-dimensional field
theories have been suggested, each realizing the higher-
dimensional theory as the low-energy limit of some more
fundamental theory with a sensible high-energy behavior.
One possibility is that the cutoff of the higher-dimensional
field theory coincides with the fundamental Planck scale,
where gravity also becomes strong. In itself this does not
allow us to say anything about the behavior of the theory at
energies above the cutoff since super-Planckian quantum
gravity is poorly understood. Moreover, the UV difficulties
with higher-dimensional field theories are unrelated to
gravity, and it is therefore interesting to search for UV
completions of higher-dimensional field theories where
gravity is completely decoupled. Some examples of this
kind have emerged in nongravitational subsectors of su-
perstring theory, including (0, 2) superconformal theories,
little string theories, and open-membrane theories of vari-
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ous kinds ([1,2], for example). Unfortunately these theo-
ries are strongly coupled and typically difficult to under-
stand. Furthermore, they cannot be defined in more than
six dimensions and seem to rely on unbroken supersym-
metry in an essential way.

In this paper we describe a new way of UV complet-
ing higher-dimensional field theories. Instead of starting
with extra dimensions, we build them. In an inversion
of the usual picture, these models are four dimensional at
very high energies. They are renormalizable and in most
cases even asymptotically free. Extra dimensions emerge
dynamically at low energies, in a simple and calculable
way. This allows us to study many mysterious features of
higher-dimensional field theories on a firm footing, with-
out worrying about the unknown physics of the UV cutoff.
Even more important, our construction of extra dimensions
puts higher-dimensional physics into a broader context and
serves as a departure point for exploring more radical and
even more interesting new possibilities.

Our example field theories, all of which will be four
dimensional, contain gauge fields and fermions and are
conveniently summarized in a pictorial representation, re-
ferred to variously as “moose” ([3], for example) or
“quiver” [4] diagrams. In such diagrams gauge groups are
represented by open circles, and fermions by single di-
rected lines attached to these circles. A line directed away
from a circle corresponds to a set of Weyl fermions trans-
forming as the fundamental representation of the gauge
group, while a line directed toward a circle corresponds
to a set of Weyl fermions transforming as the complex
conjugate of the fundamental representation. The moose
diagram we consider, Fig. 1, is the N-sided polygon rep-
resenting a field theory with a GV X G¥ gauge group and
fermions transforming bilinearly under “nearest-neighbor”
pairs of gauge transformations.

For definiteness we take G = SU(m) and G; = SU(n).
We impose a cyclic symmetry to keep all SU(m) gauge
couplings equal to a common value g, and all SU(n) gauge
couplings equal to g;. By dimensional transmutation we
may equally well describe this theory by two correspond-
ing dimensionful parameters, A and A;. Each side of
this polygon describes two types of fermions transform-
ing under the three gauge groups associated with this side,
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SU;(m) X SU;(n) X SU;+1(m):

i Xii i Yigp1 il
Xii transforming as (m, 71, 1), (1)
Yiitl transforming as (1, n,m), (2)

1 N
Seff = fd“x(——
(S 282;

where the covariant derivativeis D, U, j+1 = 9,U; j+1 —
iAﬁL Ujj+1 +1iU J'JHALH and the dots represent higher-
dimension operators that are irrelevant at low energies. The
action for the nonlinear sigma model fields connects the

o)

FIG. 2. A condensed moose diagram.

4758

tI'F]2 + fsz Ztr[(Dl/«Ujvj+l)TDMUj,j+1] + >,

where i = 1,...,N (and i = 0 is periodically identified
with i = N).

The field theory defined by this diagram is both anomaly
and asymptotically free for a wide range of m and n. At
distances short compared to both 1/A and 1/Ay, the the-
ory is well described by (N copies of) four-dimensional
weakly interacting massless fermions and gauge bosons.

What does the theory look like at longer distances? In
the limit where A; > A the long distance behavior is also
simple. At energy scales near A the SU(m) gauge cou-
pling is quite weak and may be treated perturbatively. At
this scale each of the SU(n) groups becomes strong, caus-
ing the fermions to condense in pairs: a nonzero expecta-
tion value forms for each pair of fermions connected to a
given strong gauge group:

Xiithiiv1) ~ 4T[0, i1, (3)

where f; ~ A;/(47) and U; ;41 is an m X m unitary ma-
trix parametrizing the direction of the condensate. The
confining strong interactions also produce a spectrum of
“hadrons,” analogs of ordinary glueballs and baryons, all
with masses on the order of A; ~ 47 f;. Below the scale
A, the theory can be described as a I} SU(m) gauge the-
ory coupled to N nonlinear sigma model fields, each trans-
forming as

i=1,...,N,

“4)

We may use a diagram similar to the original moose to
describe this “condensed theory,” shown in Fig. 2.

The low-energy effective action for this nonlinear sigma
model is

Uiiv1 — g ') Ui ir18i+1(x).

N

(&)

Jj=1

I

gauge fields at neighboring sites. In fact, we recognize (5)
as simply a discretized action for a five-dimensional gauge
theory with gauge group SU(m), where only the fifth di-
mension has been latticized. The nonlinear sigma model
fields are precisely the link variables of a lattice gauge the-
ory, and the condensed moose diagram is a picture of the
fifth dimension. It is remarkable that the moose diagram
has transformed from a mnemonic for the particle content
of a four-dimensional gauge theory to a new physical di-
mension of space at large distances.

The lattice spacing, the circumference of the fifth di-
mension, and the five-dimensional gauge coupling are

1 1 1

= , R = Na, — — = Ji
8fs g5 ag 8

We may eliminate any lingering doubt as to the five-

dimensional nature of this theory by calculating the spec-

trum of the N gauge multiplets. The fluctuations of the
condensates U, ;+; higgs the gauge group down to the

a

(6)
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diagonal subgroup. The gauge boson mass matrix is

2 —1 0 0 0 oo —1
—1 2 —1 0 0 0
0 —1 2 —1 0 0
5 1 (7)
0 0 0 —1 2 —1
-1 ... 0 0 0 —1 2

This matrix is familiar from the physics of balls and
springs, and its eigenvalues are easily calculated, yield-
ing a mass spectrum labeled by an integer k satisfying
—N/2 <k=N/2,

k 2\?
wi-arss(5)- (2 ((3). o
where ps = 2mk/R is the discrete five-dimensional mo-

mentum. The corresponding eigenvectors are of the form
Y™ ~ exp(impsa). For |k| << N /2 the masses become

27| k|

p ©)

My = |pi| =
This is precisely the Kaluza-Klein spectrum for a five-
dimensional gauge boson compactified on a circle of
circumference R. The gauge coupling of the diagonal
subgroup is g3 = g%/N and using (6) this gives
- - (10)
84 85
the usual relation between the five-dimensional and four-
dimensional coupling constants.

For those familiar with lattice gauge theory, the appear-
ance of the lattice action (5) makes clear that, in every
sense, a true fifth dimension has appeared at large distances
[5]. For example, the sum of the Yukawa potentials from
exchange of KK modes produces a 1/r? potential for a <
r <K R, a characteristic sign of a fifth dimension. Every
other physical measurement performed at distances much
larger than a but much smaller than R also reveals a fifth
dimension. Since the fifth dimension emerged dynami-
cally, rather than being put in by hand, it is worthwhile to
briefly address the question: What is a fifth dimension?
Mathematically, any set of ordered points can be called
a “dimension,” but physically we need more. Particles
should be able to move in the extra dimension; that is,
they should carry labels, their coordinates in the fifth di-
mension, that change as they move in the fifth dimension.
Furthermore, there should be a physical notion of locality
in the extra dimension. This translates into the requirement
of locality for the interactions in the theory. Particles with
the same labels have the largest interaction, while particles
with very different labels should interact only weakly.

These are the two defining properties of an extra di-
mension, and the fifth dimension we have generated pos-
sesses both of them. The gauge bosons propagate in the

fifth dimension. Locality is a consequence of the nearest-
neighbor coupling structure of our moose, enforced by our
choice of fermion content, gauge invariance, and renormal-
izability. These constraints have another interesting con-
sequence. There are infinitely many possible latticizations
of a fifth dimension, each with a different spectrum. We
might then suspect that the spectrum (8) is easily modified.
In fact, the particular lattice action (5) and the correspond-
ing spectrum (8) followed uniquely from our renormaliz-
able theory: the moose has made its choice.

Extra dimensions may or may not be endowed with
other properties as well. For instance, they may be trans-
lationally invariant or possess the full higher-dimensional
Lorentz symmetry. Whether or not these additional prop-
erties arise in our constructions is a dynamical question. In
the simple model we have presented, translational invari-
ance is manifest, and the full SO(4, 1) Lorentz invariance
also emerges at distances larger than a.

The lattice structure of the fifth dimension breaks five-
dimensional Lorentz invariance. For simplicity we con-
sider the limit R — %, where the theory appears five
dimensional at arbitrarily long distances. In this limit ps
becomes a continuous variable, and the dispersion relation
for the five-dimensional gauge boson becomes

N 2\’ "
E?=p*+ <—> sin%%)—» P>+ p: o asa—0.
a
(In

When a — 0 the five-dimensional Lorentz invariance is
automatically restored. This might seem surprising be-
cause the fifth dimension is apparently quite different from
the other three space dimensions. But in the limit of tiny
spacing the only possible difference is a scale choice that
we have eliminated to leading order in the weak coupling
by defining the lattice spacing (6). Quantum effects will
produce small changes in (6), but there is a definition of
the lattice spacing that produces a Lorentz invariant limit
in the full quantum theory. The fact that Lorentz invari-
ance is automatic in this continuum limit is a consequence
of the simplicity of this construction. In more complicated
models, five-dimensional Lorentz invariance in the contin-
uum limit may require tuning of parameters.

The violations of five-dimensional Lorentz invariance
due to the finite lattice size a appear as a sequence of
higher-dimension operators in the five-dimensional theory
suppressed by powers of psa. We expect contributions of
this size in any five-dimensional theory because the inverse
lattice spacing 1/a plays the role of a cutoff. The differ-
ence here, compared to a standard five-dimensional effec-
tive theory, is that the high-energy theory above the cutoff
scale is well defined, but lacks five-dimensional Lorentz
invariance. Thus the interactions suppressed by powers of
the cutoff are calculable, but some break the Lorentz sym-
metry. Above the cutoff scale, there is no vestige of five-
dimensional Lorentz symmetry remaining, because the
theory is perfectly four dimensional at short distances.
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The field theory associated with the diagram in Fig. 1
has an obvious symmetry between G and G;. It is clear
that the discussion above for Ay >> A can be repeated for
A > A;. In this dual situation, the physics is described
by the dual of the condensed moose in Fig. 2. The con-
densates in this case are

(Wiis1Xivriv) ~ 47 Vi1, i=1,...,N.
(12)
Again the physics is five dimensionful for a < r < R,
but it is a different fifth dimension, dynamically generated
by a different set of interactions and with a different set of
gauge bosons.

The transition from (3) to (12) is theoretically fascinat-
ing, but somewhat puzzling, and we do not discuss it in
detail here. But it is important to understand the approach
to the transition because it bears on the possibly phe-
nomenologically relevant question of how large the five-
dimensional gauge coupling can be. For example, the
heaviest of the KK modes has a mass of order g(Aj)fs,
parametrically lighter than the scale where G, gets strong,
A,. How similar can we make these scales? Can we in-
crease g to the region of strong coupling as well?

For simplicity, let us take N to infinity so that the
physics appears five dimensional at arbitrarily long dis-
tances. What happens as we change the ratio of A to
Ay? For A <« Ay, where our previous analysis applies,
the residual gauge interactions at distances large compared
to a are very weak. In the five-dimensional language, this
is obvious because the gauge coupling is dimensional,
g% = g%a, and its effects at distances of order ¢ are sup-
pressed by powers of g% /€. In the four-dimensional lan-
guage, one might worry that there is something wrong with
this argument at distances large compared to 1/A, but such
worry is groundless. The weak gauge group is higgsed by
the condensate (3) down to a residual gauge group with
coupling of order g2/N and thus becomes arbitrarily weak
as we take N — oo,

What happens as we increase A/A;? The gauge cou-

. 2 o . . ..
pling g5 = g“a increases, but its effects remain tiny at
large distances. We know that at some point as A — Aj,
an ecological disaster will occur, dramatically changing
the nature of the long distance physics. But it is reason-
able to suppose that the cataclysm will happen abruptly
at some point A = Ay, where both gauge couplings are
strong. The only signal at large distances of impending
doom is that as A — A, g7 = g%a gets large compared
to a. This signals the imminent breakdown of the effective
theory because dimensional couplings in an effective the-
ory must not be large compared to the appropriate power
of the cutoff. Even though the tree level interactions are
still weak at long distances, the theory is losing control of
its quantum corrections, a warning that anarchy is about to
be loosed upon the world.

The fifth dimension has appeared in the condensed
moose because the nonlinear sigma model fields allow

4760

the gauge field to “hop” from one site to the next. Since
we could have obtained this directly as a latticization of
the five-dimensional gauge theory, we might ask why we
need the original moose model at all. The reason is that
latticization in the fifth dimension does not cut off diver-
gences from large four momenta: the four-dimensional
nonlinear sigma model of (5) is nonrenormalizable, be-
coming strongly coupled at a scale ~4a f;. That is, this
theory requires a UV completion. But this is a familiar
problem, with familiar solutions. The moose model we
have constructed provides a UV completion in the same
way that QCD completes the theory of pions. However,
purely perturbative completions are also possible. For ex-
ample, we could replace the nonlinear sigma model with
a renormalizable, linear sigma model; we replace each
unitary field U; ;4 with a charged scalar field ¢; ;1. The
action for this sigma model will include a quartic poten-
tial for these scalars. If this potential produces vacuum
expectation values for all the scalars at a scale f;, this
model is indistinguishable from our moose model at low
energies. A fifth dimension then appears just as before.

In the linear sigma moose, it is easy to include other
degrees of freedom at the sites. Including appropriate cou-
plings to the link variables allows these fields to hop in the
extra dimension as well. For example, Yukawa couplings
to fermions at the sites produce hopping. Since the strength
of this hopping term is unrelated to the gauge coupling,
the fermions and gauge bosons propagate with different
maximal speeds in the extra dimension. The resulting
theory is five dimensional, but without five-dimensional
Lorentz invariance, even at large distances, although we
can always tune the couplings to recover Lorentz invari-
ance at long distance.

Although the linear sigma model example is renor-
malizable, the natural value for the vacuum expectation
values of the scalar fields is the UV cutoff of the four-
dimensional theory. We can avoid this standard problem
of fundamental scalars in a standard perturbative way: by
using supersymmetry (SUSY). For simplicity we con-
sider an N = 1,G = SU(2) SUSY gauge version of our
condensed moose, although extensions to larger gauge
groups are straightforward. The arrows in this case are
meaningless because the fundamental and antifundamental
of SU(2) are the same. The line connecting i to i + 1
denotes a bifundamental chiral superfield ¢;, that we
can think of as a 2 X 2 matrix. In addition to the gauge
interactions, the theory has a superpotential

W= 1D Si(detdp; — p?), (13)

where S; are gauge singlet chiral fields and x is a mass
scale. The theory is asymptotically free as long as the
ratio A/g is not too large. The superpotential forces spon-
taneous symmetry breaking. Writing ¢; = (u + A;) X
exp(2i o), the superpotential pairs up A; and S; with a
mass ~Au, while the X; contain the massless Goldstone
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bosons (together with their superpartners). At low ener-
gies we are left with a latticization of the five-dimensional
N =1 SU(2) gauge theory. In components, we have
SU(2) gauge bosons, together with a Dirac fermion and
a real scalar in the adjoint representation. Note that in this
theory no tuning of parameters is required to obtain five-
dimensional Lorentz invariance. Supersymmetry guaran-
tees that the gauge bosons, fermions, and scalars propagate
in the fifth dimension with the same maximum velocity,
and full five-dimensional Lorentz invariance is recovered
at long distances.

We have constructed a fifth dimension dynamically
in a four-dimensional renormalizable gauge theory. At
long distances the physics is that of a compactified
five-dimensional gauge theory with dimensionful cou-
plings, that by itself would be nonrenormalizable. This
construction is easily extended to produce several extra
dimensions.

We can now investigate higher-dimensional physics in a
well-defined setting. Questions involving energies higher
than the naive five-dimensional cutoff are straightforward
in this context. Higher-dimensional phenomena, such as
power-law running, localization of gauge fields and chiral
fermions, orbifold compactification, and supersymmetry
breaking, to name a few, have straightforward construc-
tions in our formalism.

The insight provided by our technique can work in both
directions. Just as constructing extra dimensions in a renor-
malizable setting illuminates higher-dimensional physics,
so too the physics of extra dimensions may suggest new
phenomena in the context of purely four-dimensional
models that have no extra-dimensional interpretation. This
has led us to a novel approach for stabilizing the electro-
weak scale.

How does gravity fit in? The simplest possibility is to
add four-dimensional gravity to our four-dimensional field
theories. While the nongravitational physics appears five
dimensional, gravity remains purely four dimensional.
Constructing extra dimensions in this way frees us from
many of the naive constraints of higher-dimensional model
building. In particular, the absence of gravity in the fifth
dimension eliminates many of the defects of nonstandard
gravity at high energies. For example, radius stabilization
is no longer an issue—there is no dynamical radius to

stabilize. Rather the size of the extra dimension is set by
the fixed parameters of the four-dimensional theory. As
another example, the cosmology of extra dimensions is
often troublesome. But in our construction, the Universe
at temperatures above the naive five-dimensional cutoff
is described by a completely standard four-dimensional
Friedmann-Robertson-Walker cosmology. Without gravity
the shape of the extra dimensions is not constrained by
Einstein’s equations. In fact, the extra dimensions we have
constructed may not have any simple manifold interpreta-
tion at all (consider a “figure eight”). It is also interesting
to attempt to generate full five-dimensional gravity through
a similar mechanism. This requires degrees of freedom
that link the four-dimensional geometry at each site.

It is tempting to imagine that some or all of the three or-
dinary spatial dimensions may be generated dynamically.
There is no obstacle in principle to constructing moose
models in 2 + 1 dimensions that generate a fourth dimen-
sion for nongravitational fields. However, a mechanism for
obtaining four-dimensional gravity is essential.

The dynamical generation of extra dimensions within
four-dimensional field theories allows exploration of
higher-dimensional physics in a familiar context. Con-
versely insights from extra dimensions may be applied
directly to purely four-dimensional models. Our construc-
tion serves as a link from extra dimensions to a new world
of ideas.
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