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Solving N-Body Problems with Neural Networks
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We show a new approach for solving the N-body problems based on neural networks. Without loss of
generality, we derived a network solution for the time-dependent positions of N bodies in self-gravitating
systems. The simulation is limited to a system of collisionless disks — a case for determining the spatial
distributions of dark matter and in reproducing global effects such as formation of spiral galaxies. Our ap-
proach yields a solution that is analytic with time-reversed path-tracing capabilities that could lead to new
findings in the study of the collective behavior of N-body systems.
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The N-body problem occurs in almost all branches of
physics from studies on submicroscopic systems to macro-
scopic ones (Bose-Einstein condensation, molecular os-
cillations, protein-folding, granular dynamics, swarming,
multilane traffic flow, galaxy formation, etc). The problem
is characterized by a set of coupled differential (or differ-
ence) equations (DE’s) and progress in our understanding
of complex system dynamics has depended in our ability
to solve accurately the set which rapidly becomes com-
plicated with N [1–3]. Investigations of N-body systems
have resulted in the discovery of new interesting collective
phenomena such as equipartition, mass segregation, jam-
ming, and phase synchronization [4,5].
N-body problems are difficult to solve. In fact, the exact

solution for the relativistic 2-body self-gravitating systems
has just been found [6]. The N-body system �N $ 3� be-
haves chaotically with no known analytic solution even in
the nonrelativistic regime [3]. As an ordinary differential
equation (DE) the system is considered an “initial value
problem” that satisfies the Lipschitz condition [7] of only
one possible outcome for a particular initial state.

Large N-body systems are investigated numerically
using standard algorithms whose efficiency depends on
[8–11]: (i) accuracy improvement with step-size reduc-
tion, (ii) adaptability of time step in response to prevailing
boundary conditions, and (iii) growth of computational
complexity C with N . Iterative methods have two serious
limitations which affect the accuracy and information con-
tent of their solutions: (1) rapid propagation of rounding-
off errors with C which increases with N and time-step
resolution [11], and (2) availability of solution values only
at discrete instants of time defined by the step size.

Here, we propose a new strategy for solving N-body
problems without the limitations of the standard methods.
It is based on artificial neural networks (NN) which has
been previously used to solve noncoupled DE’s [12,13].
The NN solution is analytic with time-reversed path-
tracing capabilities — a solution value is obtained at any
instant of time. While the NN solution is still affected by
floating-point errors, its analytic form allows for a sys-
tematic truncation error throughout the temporal evolution
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of motion instead of cumulative as in the standard meth-
ods. Hence, the errors propagate predictably and their
corrections are easy to implement. The complexity C of
the solution search is also independent of time step.

The importance of error propagation analysis traces
back to Lecar et al. [14] who showed that 11 different
standard methods yield solutions which differed by as
much as 100% for N � 25. This basic failure is argued
to be solely a product of encounters [15], that induces
the solution to diverge exponentially with increasing
time steps. Surprisingly, as far as we know, no single
experiment has been utilized to test the divergence of
collisionless-disks solution and perhaps settle the issue.
Here we demonstrate using Hamiltonian conservation and
time-reversal tracing that the NN solution does not diverge
exponentially with time for an N-body system. While the
NN architecture is tested only for a self-gravitating system
of collisionless disks, our proposed method is general and
applies to other N-body systems as well.

We consider N particles of mass mi with positions �ri�
which are each moving under an attractive force from all
the other bodies where particle index i � 1, . . . ,N . The
system is described by

Fi�ri , t� �
≠2ri
≠t2
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A feedforward three-layer perceptron architecture with
N outputs is used to determine the N particle positions
ri�t� at time t. Its �2N 1 1� inputs �zi� represent the
specific t value, and the initial particle positions �rio� and
velocities �yio�. The NN maps to ri�t� according to ri�t� �Pq

j�1�wjiYj� and Yj �
P2N11

i�1 tanh�wijzi� where wmn

represents the interconnection weight of the mth and the
nth layer and q is the number of hidden nodes [11,12].
The activation functions for the hidden and output nodes
are tanh�x� and linear, respectively.

The unsupervised NN is trained via a modified gradi-
ent descent rule where we minimize a positive-definite
cost function E�ri� that is derived from the dynamics and
boundary conditions of the system [11,12]:
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E�ri� is chosen such that as E�ri� ! 0 the exact solution
�ri�t�� is approached by the NN output. E�ri� represents
the degree of instability of the NN environment and the
unsupervised NN training is aimed at reaching its mini-
mum state from an initially random state. The weights are
updated at a fixed learning rate s � 0.001, from wp

mn to
wp11
mn � wp

mn 2 s
≠E

≠wmn
, where index m is the mth node

in the previous layer, while n is the nth node in the next
layer [16]. Because the computational load increases with
N and could exceed the processing capacity of the com-
puter (DEC Alpha, 667 MHz, GCC 2.7.2 compiler, double
precision), we introduce a normalization factor based on
N before the signals are evaluated in the NN nodes.

In Fig. 1 are two-dimensional (2D) time traces of N
point-particle systems [N � 2�1a�, 3�1b�, 4�1c�, and
10�1d�] from its initial state [mi � 1.0, gravitational
constant G � 0.02, �jrij $ 3500.0�]. Two-body motion
is known to trace those paths that correspond to one of
the conic sections. On the other hand, Figs. 1b–1d depict
the collapse of an N-body system �N $ 3� from an initial
state of rest. The 2D presentations achieve a sense of
connection with real galactic systems that a 1D self-
gravitating system cannot while avoiding the complica-
tions encountered (e.g., singularities, evaporation [4]) in a
3D analysis. The examples are outputs of a trained NN
with its E�ri� reduced to 1023. The trained NN performs
robustly against slight changes in the initial conditions
which is crucial for maintaining the accuracy of ri�t� with
increasing t considering that the gravitational N-body
system is quite sensitive to changes in the initial state for
N $ 3 [13].
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FIG. 1. Temporal evolution of N-body gravitational system on
a 2D plane: (a) N � 2, (b) N � 3, (c) N � 4, and (d) N � 10.
Initial particle positions are designated by arrows. Particles are
initially at rest except for the two-body system where bodies are
given a slight initial vertical velocity.
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Accuracy.—The functional dependence between the
NN output error er and E�ri� could not be established
because the true solution of Eq. (1) is unknown a priori.
Hence, er is not directly computable from the E�ri� value.
However, strategies exist that permit the minimization of
errors such as generalization errors, training set errors,
etc. [17]. Standard methods also suffer from the same
fate and the capability to handle errors normally rates
the superiority of a particular method over others [11].
Accuracy is often measured by comparing the solution
with those obtained by other methods [8,18,19].

For the gravitational N-body problem, a possible accu-
racy measure is the ability of the solution to maintain the
value of the system Hamiltonian H through time [20]. De-
viations (e.g., distortion, perihelion shift, and overstep phe-
nomenon) from ideal star movements have occurred due
to discretization and rounding-off errors. Mostly, they are
due to variations in the total energy of the system. For ex-
ample, Euler integration which is a basic numerical method
for N-body problems, is known to gain energy over time.

Figure 2 plots the deviation dH of H as a function of t
for N � 2, 3, 4, 10, and 25 for a solution of a trained NN
with E�ri� � 1023 �p � 10 000� and dH must be 0 at
t � 0. The results show that while the NN solution could
not describe the ideal initial state of the system [dH�t �
0� fi 0], it maintains a systematic linear decay for H which
approaches the theoretical energy conservation law with
increasing p. For systems with more particles, longer
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FIG. 2. Percentage deviation of the Hamiltonian as a func-
tion of t for N � 2, 3, 4, 10, and 25. The inset plot shows
the dependence of tL with tT where the solid is described by
tL � 20.003t2T 1 10.653tT 1 7.590.
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training times (larger p’s) are needed to reach a desired
E�ri� value.

A limit tL exists for the duration that the NN solution
could maintain H. Figure 2 (inset plot) reveals a nonlinear
dependence of tL with the time-range tT used in the train-
ing set that implies an upper limit for the effective training
set size. While the NN solution is not exact, the systematic
propagation of the error allows for an accurate observation
of the temporal evolution of the motion of the individual
particles. Our analysis revealed that for N collisionless
disks the NN solution did not diverge exponentially. The
Hamiltonian has remained accurately conserved (deviation
of 0.0132%) even after 104 time steps with size Dt � 1.

The NN solution is analytic and its information content
is not limited by sampling conditions (e.g., magnitudes
of Dt and sampling period). Its analyticity leads to a
more efficient way of storing data concerning the temporal
evolution of the system.

Negative time.—The dynamics of retracing the con-
strained motion of a system of N bodies from their present
states is not covered by the Lipschitz condition for initial
value problems. The iterative nature of standard solution
searches allows only for a forward (temporal) progression
of the system from its initial state. They could not address
accurately the uniqueness of backtracking the paths taken
by the particles [20,21]. Temporal retracing is crucial in
issues about the history of a particular set of heavenly bod-
ies from their current states.

The NN solution has information about the “negative”
time evolution because the NN assigns t � 0 as “present”
time when the system is its initial state. Because the NN
solution is analytic, values for �ri� at t , 0 could be known
even if the said t range was not taken during training.

We investigated if a trained NN could retrace a known
forward temporal evolution of an N-body system using
the concept of negative time (see Fig. 3). A path is first
predicted by the trained NN for a two-body system from
t � 0 to tfinal then �ri�t � tfinal�2�� and �yi�t � tfinal�2��
were chosen and used as initial conditions �t � 0� for the
new (retraced) path. Two time ranges were predicted:
t � 0 to tfinal�2 (forward tracing) and t � 0 to 2tfinal�2
(back tracing). We found that the trained NN could retrace
the path accurately, which proves that the solution for col-
lisionless N-body system does not diverge exponentially.

Complexity.—The accuracy and efficiency of an
N-body simulator depend on N [21,22] and is limited
by: (i) computer memory size, (ii) sampling period, and
(iii) statistical distributions of real N-body system
[6–9,22]. In standard methods, large N’s may be accom-
modated by performing s separate simulations with N�s
particles instead of one simulation with N particles. The
former is computationally less expensive and easy to par-
allelize [21]. However, this scaling procedure works only
for clusters whose dynamics scales linearly with N . For
bodies that interact diversely in forming clusters, the best
way is to modify or reformulate the algorithm, a strategy
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FIG. 3. Retracing the motion of a two-body system with a
trained NN. Retraced path exhibits an average error of 0.21%
per time step. Initial particle positions are designated by ar-
rows. From the original predicted path, points �x � 69.5614 3

102, y � 70.3041 3 102� at t � tfinal�2 were used as initial
states for retracing.

the leads to the tree- and particle-mesh methods whose
computational complexity C per time-step scale with
O�N logN� and O�N 1 Ng logNg� respectively, where
Ng is the number of grids that statistically confine the N
bodies in the particle-mesh method. A large C reduction
is achieved relative to the brute force particle-particle
method where C � O�N2�. Note that both the tree- and
particle-mesh algorithms are also implementable via the
NN approach.

The analyticity of the NN solution implies that for an
optimized NN, the total C scales with O�1.91N 1 3� in-
dependent of Dt. Optimization of the NN architecture
for a given N is obtained by searching for that hidden
node number q with the smallest possible E�ri� for a fixed
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FIG. 4. Comparison of the complexity C as a function of N for
particle-particle (squares), tree- (solid squares), particle-mesh
(circles), and NN methods (solid circles) with t � 1. The
first three methods are implemented via the standard integration
methods.
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iteration length �p � 104�. In the standard methods, the
number of operations needed to bring the system from
t � 0 to hDt varies as hC. The NN method does not
depend on h and the trained NN could forecast faster far-
ther into time. Figure 4 compares the dependence of C
with N for the various methods.

We have presented a new approach for solving N-body
problems. The distinct advantages (analyticity of solution,
sytematic propagation of errors, time-step independent C)
of the approach over standard methods have been discussed
thoroughly.
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