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Superfluid Gyroscope with Cold Atomic Gases
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A trapped Bose-Einstein condensed atomic gas containing a quantized vortex is predicted to exhibit
precession after a sudden rotation of the confining potential. The equations describing the motion of
the condensate are derived and the effects of superfluidity explicitly pointed out. The dependence of the
precession frequency on the relevant parameters of the problem is discussed. The proposed gyroscope
is well suited to explore rotational effects at the level of single quanta of circulation.

DOI: 10.1103/PhysRevLett.86.4725 PACS numbers: 03.75.Fi, 05.30.Jp, 32.80.Pj, 67.40.–w
After the realization of Bose-Einstein condensation [1]
in magnetically trapped vapors of alkali atoms, cooled
down to extremely low temperatures, the superfluid be-
havior of these systems has become the object of extensive
experimental work. This includes the study of rotational
properties, like quantized vortices [2,3] and the quenching
of the moment of inertia [4], as well as the reduction of
dissipative effects [5].

The purpose of this work is to show that Bose-Einstein
condensed (BEC) gases can be used to realize a quantum
gyroscope where the effects of superfluidity show up in a
very peculiar way. Superfluid gyroscopes have been al-
ready realized with liquid 4He [6] and 3He [7] and have
been mainly used to investigate the nature of persistent
currents in toroidal geometries. Most of the experiments
with helium gyroscopes operate with many quanta of cir-
culation. Compared to liquid helium, trapped BEC gases
are mesoscopic systems in the sense that the healing length,
which provides a typical range of dynamic correlations and
fixes the size of the vortex core, is not extremely small with
respect to the size of the sample [8]. For the same reason
the angular momentum Nh̄ carried by a single quantized
vortex can have visible effects on the global motion of
the condensate as we will prove in this Letter. A further
feature that characterizes these systems is the very pecu-
liar type of confinement which yields new possibilities for
exploring superfluid phenomena. Important gyroscopic ef-
fects associated with the occurrence of vortex lines already
have been observed in trapped BEC gases [9–11]. The au-
thors of [9] have succeeded in testing the quantization of
the angular momentum of a single vortex line. To this pur-
pose one generates a quadrupole deformation in the plane
orthogonal to the vortex axis. The observed precession of
the deformation is proportional to the angular momentum
carried by the vortex, in accordance with the predictions
of theory [12,13]. Notice that in this experiment the vortex
line is not affected by the precession. The authors of [10]
and [11] have instead observed the precession of a vortex
line either displaced or tilted from the symmetry axis of
the condensate. In this case the motion of the condensate
is not affected at a macroscopic level and the precession
involves the change of the density on a more microscopic
scale, of the order of the size of the vortex core.
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In the present work we discuss the macroscopic pre-
cession of the symmetry axis of a deformed condensate
caused by the sudden rotation of the trap, in the presence
of a quantized vortex line. This precession corresponds to
a full rotation of the condensate in 3D, which preserves the
intrinsic shape of the system.

The geometry of the proposed gyroscope is illustrated
in Fig. 1. The system consists of a dilute and cold gas of
atoms with mass m confined by an axi-symmetric trap of
harmonic shape,
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FIG. 1. Schematic picture of the BEC gyroscope. The con-
densate is suddenly rotated with respect to the symmetry axis
of the trap (z axis) and exhibits precession in the presence of a
quantized vortex line.
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characterized by the deformation parameter

e �
�v2

� 2 v2
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�v2
� 1 v2

z �
, (2)

which will be taken different from zero. As a con-
sequence of this anisotropy the atomic cloud is also
deformed. If the atoms are bosons, at very low tem-
peratures they undergo a phase transition associated with
the macroscopic occupation of a single-particle state
(Bose-Einstein condensation). This happens for tem-
peratures below the critical value kTc � 0.94h̄vhoN1�3

where vho � �vzv
2
��1�3 is the geometrical average of

the trapping frequencies and N is the number of atoms.
Typical values of Tc range between 0.1 and 1 mK. Below
Tc the system exhibits unique features which have been
the object of systematic experimental and theoretical
investigation. For our purposes the system should be very
cold in order to minimize the dissipative effects produced
by the thermal cloud which tend to destabilize the vortex
line [14,15]. For this reason we will discuss here the
behavior of the gas at zero temperature.

Let us consider a Bose-Einstein condensate in equilib-
rium in the trap, with no angular momentum, and let us
suppose that the symmetry axis of the trapping potential
is suddenly rotated in the xz plane through an angle u0.
After the rotation the gas is no longer in equilibrium and
starts oscillating around the new symmetry axis. If the
angle of rotation is small, the gas will keep its intrinsic
shape and the motion will correspond to a periodic oscil-
lation characterized by the angle u�t�, giving rise to the
so-called scissors mode [16]. The motion is very differ-
ent from the one of a classical body because the inertia is
strongly suppressed by superfluidity. In particular, the os-
cillation frequency does not vanish when the deformation
(2) of the trap becomes small, as one would expect for a
classical system.

The calculation of the frequency of the scissors mode
requires the solution of a nontrivial many-body problem
where the interactions among particles and the effects
of quantum statistics play an important role. An exact
solution of the problem can be obtained for large samples,
such that the dimensionless parameter Na�aho is much
larger than unity. This limit corresponds to the so-called
Thomas-Fermi (TF) regime and is well achieved in many
available experimental configurations. Here a is the
s-wave scattering length (of the order of 1022 1023 mm)
while aho �

p
h̄��mvho� is the oscillator length fixed

by the geometrical average of the trapping frequencies
(of the order of a few microns in standard magnetic
traps). In the TF limit, the equilibrium density takes the
form of an inverted parabola: n�r� � m�m 2 Vext�r���
�4p h̄2a� for m $ Vext and zero elsewhere, where
m � �vho�2��15Na�aho�2�5 is the chemical potential
fixed by the normalization of the density. The surface
where the density vanishes defines an ellipsoid whose
4726
principal radii R� and Rz are determined by the relation-
ship v

2
�R2

� � v2
z R2

z � 2m�m. In the Thomas-Fermi
limit the equations of motion take the simplified form
of the hydrodynamic theory of superfluids [17]. With
respect to the equations of classical hydrodynamics they
are characterized by the additional constraint of irrotation-
ality. It is worth noticing that the “hydrodynamic” form
of these equations is not the result of collisional processes
as happens in classical gases, but is the consequence of
superfluidity. These equations admit an analytic solution
for the scissors mode with frequency [16]

vscissors �
q

v
2
� 1 v2

z . (3)

This mode has recently been observed [4] confirming the
predictions of theory with high accuracy.

Let us discuss now the case in which the condensate has
initially an intrinsic angular momentum. This can be due
to a quantized vortex aligned along the symmetry axis of
the condensate, carrying one unit h̄ of angular momentum
per particle. The size of the vortex core is fixed by the
healing length j � �2mm�h̄2�21�2 and is always smaller
than the size of the condensate. Also in the presence of
the vortex the sudden rotation of the trap will excite the
scissors mode, but now the oscillation will precess due to
the torque

d
dt

�L� �
1
ih̄

��L, H�� � 2m�r 3 =Vext� (4)

produced by the external anisotropic potential (1). Here
L is the angular momentum operator and the expecta-
tion value is taken on the quantum mechanical state of
the system. The value of the torque along the y axis is
d�Ly��dt � 2m�v2

� 2 v2
z �N�xz� and differs from zero

immediately after the sudden rotation of the trap in the xz
plane, thereby causing the precession.

In order to derive the equation for the rotation of the
condensate we notice that, if the angle of rotation u0 is
small compared to the deformation (2) of the trap, the
shape of the sample is preserved. Under this condition
the whole motion can be described in terms of two angles:
the inclination angle u and the azimuthal angle f. This is a
remarkable feature because gases are highly compressible
and their shape can change very easily. The values of u

and f are related to the averages �xz� and � yz� by the
geometrical relations
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7
v2

z 2 v
2
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u cosf ,
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7
v2

z 2 v
2
�

vzv�

u sin f ,

(5)

where R �
p

R�Rz and we have assumed u ø e. This
condition is not too severe for actual experiments. For
example, in the experiment of [4] on the scissors mode
the value of e was 0.48 while the angle of rotation Q0
was about 6± corresponding to �0.1 rad. If the condition
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u ø e is not satisfied, additional quadrupole modes are
excited and the condensate does not keep its intrinsic shape
during the oscillation.

The crucial problem now is to obtain the equations for
the averages �xz� and �yz� in the presence of the vor-
tex. This problem was solved in [12] where it was shown
that, in the Thomas-Fermi limit, the quadrupole operators
q6 �

PN
k�1�xk 6 iyk�zk excite, respectively, just one col-

lective mode j6� with frequency v6. The solution of the
Schrödinger equation, in the presence of a small perturba-
tion generated by these operators, then takes the form

jC�t�� � e2iE0t� h̄�j0� 1 c1e2iv1t j1� 1 c2e2iv2t j2�� ,

(6)

where j0� is the equilibrium configuration, j6� are eigen-
states of the Hamiltonian corresponding to the elementary
excitations created by q6, and the complex parameters c6

characterize the initial state of the system. One can also
show that the strengths of the quadrupole operators q6 are
equal: �0jq2q1j0� � �0jq1q2j0�, while the splitting be-
tween the two frequencies takes the simple form [12]

v1 2 v2 �
�lz�

m�x2 1 z2�
. (7)

In Eq. (7) the quantity ��z� is the angular momentum per
particle in the equilibrium configuration, while the average
square radii can easily be evaluated in the Thomas-Fermi
limit where one finds �x2� � �y2� � �2�7�m�mv

2
� and

�z2� � �2�7�m�mv2
z . Result (7) holds if the splitting is

small compared to the unperturbed value (3) of the collec-
tive frequency.

The scenario emerging from the above discussion is
quite clear. In the absence of vortices (�lz� � 0) the two
modes j6� are degenerate and their frequency is given by
(3). This is a simple consequence of time reversal symme-
try. In the presence of the vortex there is a lift of degener-
acy which is determined by the angular momentum of the
system according to (7) [18]. By expressing the average
values �xz� and �yz� in terms of the expectation values of
the operators q6 and using explicitly Eq. (6), one derives
the following time dependence for the angles u and f:

u�t� cosf�t� � a cosv1t 1 a0 sinv1t 1 b cosv2t

1 b0 sinv2t , (8)

u�t� sinf�t� � 2a0 cosv1t 1 a sinv1t 1 b0 cosv2t

2 b sinv2t , (9)

where the real coefficients a, a0, b, and b0 depend on the
initial conditions for u and f. For example, the normal
modes j6� can be separately excited by choosing a � u0,
a0 � b � b0 � 0 and b � u0, a � a0 � b0 � 0, re-
spectively. In both cases the inclination angle u remains
constant, u�t� � u0, while the azimuthal angle f pre-
cesses according to the laws v1t and 2v2t, respectively.

In the most relevant case of a sudden rotation in the xz
plane, the initial conditions instead correspond to u�0� �
u0, u0�0� � f�0� � f0�0� � 0. In this case the parame-
ters of Eqs. (8) and (9) are a � b � u0�2, a0 � b0 � 0,
and the solutions take the form

f�t� �
�v1 2 v2�t

2
(10)

and

u�t� � u0 cos

∑
�v1 1 v2�t

2

∏
. (11)

The simultaneous excitation of the j6� modes is easily un-
derstood by noticing that the rotation of the trap produces
a change in the external potential of the form dVext �
m�v2

� 2 v2
z �u0xz. This gives rise to a perturbative

term in the Hamiltonian, proportional to the combina-
tion �q1 1 q2� of the quadrupole operators introduced
above. Equations (10) and (11) show that the scissors
oscillation, characterized by the frequency �v1 1 v2��
2 � vscissors, undergoes a precession df�dt fixed by the
splitting (7). The relative precession can be expressed in
the form

v1 2 v2

v1 1 v2

�
7
2

��z�
h̄

l5�3

�1 1 l2�3�2

µ
15N

a
aho

∂22�5

,

(12)

where l � vz�v� �
p

�1 2 e���1 1 e� and we have
used the Thomas-Fermi result for �x2� and �z2�. The
precession frequency df�dt, and hence the ratio (12),
depends explicitly on the value of the angular momentum
per particle which, in the case of a single quantized vortex
aligned along the symmetry axis of the condensate, is
given by ��z� � h̄. The ratio (12) depends also on the
shape of the trap. This provides further flexibility to
optimize the visibility of the precession. In typical ex-
perimental configurations the Thomas-Fermi combination
�15Na�aho�22�5 is of the order of 1022 so that for a highly
elongated trap (l ø 1) the relative precession is small.
For values of l closer to unity the ratio (12) becomes
larger. With suitable choices of the parameters of the
trap the precession can be easily of the order of 1 Hz and
should be consequently observable by imaging the atomic
cloud at different times.

In conclusion, we have shown that Bose-Einstein con-
densed gases confined in harmonic traps can be used to
realize a quantum gyroscope characterized by two impor-
tant superfluid effects: the reduced value of the inertia of
the sample and the quantization of the angular momen-
tum associated with the vortex. The proposed gyroscope
is characterized by the precession of the symmetry axis of
the condensate around the symmetry axis of the confining
trap, the precession frequency being fixed by the angu-
lar momentum carried by the vortex line. The experimen-
tal realization of the proposed gyroscope would provide a
further tool to explore the intriguing features exhibited by
rotating Bose-Einstein condensed gases, including the sta-
bility [19,20] and the lifetime [15] of vortex lines.
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