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Measuring the Quantum State of a Large Angular Momentum
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We demonstrate a general method to measure the quantum state of an angular momentum of arbitrary
magnitude. The �2F 1 1� 3 �2F 1 1� density matrix is completely determined from a set of Stern-
Gerlach measurements with �4F 1 1� different orientations of the quantization axis. We implement the
protocol for laser cooled Cesium atoms in the 6S1�2�F � 4� hyperfine ground state and apply it to a
variety of test states prepared by optical pumping and Larmor precession. A comparison of input and
measured states shows typical reconstruction fidelities F * 0.95.
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The quantum state of a physical system contains in-
formation which can be used to statistically predict the
outcome of measurements. The inverse problem was men-
tioned by Pauli in 1933 [1]: is it possible to determine
an unknown quantum state by measuring a sufficiently
complete set of observables on a number of identically
prepared copies of the system? This basic question has
gained new relevance in recent years, following the real-
ization that systems whose components and evolution are
manifestly quantum can perform tasks that are impossible
with classical devices, such as certain computations, se-
cure communication, and teleportation [2]. As we harness
quantum coherent dynamics for such purposes, the devel-
opment of techniques to accurately control and measure
quantum states becomes a matter of practical as well as fun-
damental interest. Reconstruction of a (generally mixed)
quantum state based on a record of measurements is a non-
trivial problem with no general solution [3], but system-
specific algorithms have been developed and demonstrated
in a limited number of cases. These include light fields
[4], molecular vibrations [5], electron orbital motion [6],
and center-of-mass motion in ion traps [7] and atomic
beams [8]. More recently multiparticle states have been
measured for entangled spin-1�2 systems in NMR [9] and
for polarization-entangled photon pairs [10].

In this Letter we present a new method to measure
the unknown quantum state for an angular momentum
of arbitrary magnitude. The protocol is implemented for
laser cooled Cesium atoms in the 6S1�2�F � 4� hyperfine
0031-9007�01�86(21)�4721(4)$15.00
ground state, and typically reproduces input test states with
a fidelity better than 0.95. Our work is motivated in part
by our ongoing study of quantum transport and quantum
coherence in magneto-optical lattices, where the atomic
spin degrees of freedom couple to the center-of-mass mo-
tion [11]. The correlation between spin and motion in this
system offers the possibility to use the angular momen-
tum as a “meter” [12] to probe the spinor wave packet
dynamics. A similar application has been proposed in
cavity QED, where an atomic angular momentum can be
used to read out the quantum state of light in an optical
cavity [13]. We expect our technique also to provide a
powerful tool to evaluate quantum logic gates for neutral
atoms [14].

The angular momentum quantum state of an ensemble
of atoms with spin quantum number F is described by its
density matrix � . Newton and Young have shown that suf-
ficient information to determine � can be extracted from
a set of 4F 1 1 Stern-Gerlach measurements, carried out
with different orientations of the quantization axis [15].
They derived an explicit solution for quantization direc-
tions n̂k with a fixed polar angle u and different azimuthal
angles fk. Our reconstruction algorithm uses the same
general approach, but employs a numerical method to solve
for the density matrix for a less restrictive choice of direc-
tions. This allows for flexibility in the experimental setup
and improves the robustness against errors.

As a starting point for our reconstruction we choose
a space fixed coordinate system �x̂, ŷ, ẑ� in which to
© 2001 The American Physical Society 4721
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determine � . If we perform a Stern-Gerlach measurement
with the quantization axis along ẑ, we obtain the popu-
lations of the 2F 1 1 eigenstates jmz� of F̂z , i.e., the
diagonal elements of the density matrix � . Information
about the off-diagonal elements can be extracted from
additional Stern-Gerlach measurements with quantiza-
tion axes along directions n̂k fi ẑ. For each of these
measurements we obtain a new set of populations p �k�

m ,
corresponding to the diagonal elements of a matrix � �k�

representing � in a rotated coordinate system with the
quantization axis oriented along n̂k . The associated
coordinate transformation is a rotation by an angle uk

around an axis ûk in the xy plane and perpendicular to n̂k

[see Fig. 1(a)]. The new populations can then be found
from a unitary transformation of � ,

p �k�
m � �mjR�k�y�R�k�jm� �

X
i,j

R
�k��
im R

�k�
jm�ij , (1)

where 2F # m, i, j # F and 1 # k # 4F 1 1. The
rotation operators are given by R�k� � exp�2 i

h̄ ukF̂ûk	.
Arranging the populations p �k�

m and density matrix
elements into vectors �p and �r, Eq. (1) can be written as
�p � M �r, where the rectangular matrix M is determined
by the set of rotations �R�k��. The elements of the density
matrix � can then be obtained as �r � M1 �p, where

M1 �
RX

i�1

1
p

li
wiv

y
i � �MyM�21My (2)

is the Moore-Penrose pseudoinverse [16]. R and li are
the rank and nonzero eigenvalues of the Hermitian matrix
MyM, with wi and vi being the corresponding eigenvec-
tors of MyM and MMy, respectively.

In an experiment there is measurement noise and sys-
tematic errors, which cause the observed populations p �k�

m
to deviate from those predicted by Eq. (1). In this situa-
tion the pseudoinverse solution yields a least-squares fit to
the data [16]. This fit, however, becomes sensitive to noise
and errors if one or more of the li in Eq. (2) is close to
zero. A robust reconstruction algorithm must therefore use
a set of directions �n̂k� that lead to reasonably large li . A
second problem arises because the pseudoinverse solution,
while always the best fit to the data, is not guaranteed to
be a physically valid density matrix — a density matrix has
unit trace, is Hermitian, and has non-negative eigenvalues.

FIG. 1. (a) Direction n̂k of a Stern-Gerlach measurement in
spherical coordinates. (b) Time-of-flight distribution with well-
separated peaks corresponding to the populations in the magnetic
sublevels jm�.
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The pseudoinverse solution automatically fulfills the first
two conditions when the input populations are normalized.
However, when negative eigenvalues occur we have to em-
ploy a different method to solve the inversion problem. For
this purpose, we decompose � as

� � TTy with Tij � 0, for j . i ,

and Tii [ �,
X
i,j

jTijj
2 � 1 .

This forces the density matrix to have unit trace, be Her-
mitian, and positive semidefinite. The �2F 1 1�2 2 1
independent real-valued parameters of the complex, lower-
triangular matrix T can then be optimized to yield the best
fit between measured and expected populations.

We have implemented this general procedure for Ce-
sium atoms in the 6S1�2�F � 4� hyperfine ground state.
A standard magneto-optical trap (MOT) and optical mo-
lasses setup is used to prepare an ensemble of 
106 atoms
in a volume of 0.1 mm3 and at a temperature of 3.5 mK.
Atoms from the molasses are loaded into a near-resonance
optical lattice, composed of a pair of laser beams with or-
thogonal linear polarizations (1D lin � lin configuration)
and counterpropagating along the (vertical) ẑ axis. After
this second laser cooling step the atoms are released from
the lattice, at which point a range of angular momentum
quantum states can be prepared.

A laser cooling setup provides a convenient framework
for Stern-Gerlach measurements [17]. For each measure-
ment we define the quantization axis by applying (switch-
ing time 
2 ms) a homogeneous bias magnetic field of

1 G pointing in the desired direction. All subsequent
changes in the magnetic field are adiabatic, which ensures
that the initial projection of the atomic spin onto the direc-
tion of the field is preserved at later times. As the atoms
fall under the influence of gravity, we apply a strong mag-
netic field gradient (jBj � 100 G and =jBj � 100 G�cm)
by pulsing on the MOT coils for 15 ms. The resulting
state dependent force F � 2mgFmB=jBj is sufficient to
separate the arrival times for atoms in different jm� as
they fall through a probe beam located 7 cm below the
MOT [see Fig. 1(b)]. The magnetic populations can then
be accurately determined from a fit of nine Gaussians
to the time-of-flight distribution. In our case a total of
4F 1 1 � 17 Stern-Gerlach measurements are needed to
reconstruct � . The corresponding 17 directions n̂k of the
bias field are produced by three orthogonal pairs of coils
in near-Helmholtz configuration. This setup provides com-
plete freedom to choose the measurement directions, and
allows us to set the dc-magnetic field with an accuracy of
0.1± in a volume of 1 cm3. For the results reported be-
low we use 16 measurements with uk � 82±, and a single
measurement with uk � 0±— a geometry which is easy to
implement and leads to large singular values li .

We evaluate the performance of our reconstruction pro-
cedure by applying it to a number of known input states.
These test states are created by a combination of laser
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FIG. 2. (a) Density matrix of a pure jmz � 24� input state ob-
tained by optical pumping with s2-polarized light, and (b) mea-
sured density matrix with a fidelity of F � 0.97. Note: All
figures display absolute values of the density matrices.

cooling, optical pumping, and Larmor precession. First
consider optical pumping by a s2-polarized laser beam
tuned to the 6S1�2�F � 4� ! 6P3�2�F0 � 4� transition,
which allows us to prepare the ensemble in a pure jmz �
24� state. A single Stern-Gerlach measurement with quan-
tization axis along ẑ confirms the essentially unit popu-
lation of this state. For a single nonzero population we
can rule out off-diagonal elements due to the constraint
j�ij j

2 # �ii�jj , and in this case we therefore know the
complete density matrix with a high degree of confidence.
Both the input and measured density matrices are shown
in Fig. 2, and show excellent agreement. To quantify the
performance we use the fidelity [18]

F �

µ
Tr

∑q
�

1�2
i �r�

1�2
i

∏∂2

,

which is a measure of the closeness between the input (�i)
and the reconstructed (�r ) density matrices and takes on
the value F � 1 when they are identical. For an jmz �
24� input state our reconstruction fidelity is F � 0.97.
Optical pumping with s1 yields a nearly pure jmz � 4�
state, which we can similarly reconstruct with a fidelity
of F � 0.94. Starting from jmz � 24� we can further
produce a range of spin-coherent states [19] by applying

FIG. 3. Measured density matrices for spin-coherent states ob-
tained by Larmor precession of jmz � 24� around x̂ by (a) 30±

[F � 0.95], (b) 60± [F � 0.96], (c) 90± [F � 0.95], and
(d) 120± [F � 0.92].
FIG. 4. (a) Input state jmy � 0� prepared by optical pump-
ing with linear ŷ-polarized light, and the reconstruction result
(b) represented in the �jmy�� basis. The density matrices of in-
put (c) and measured state (d) in the standard �jmz�� basis. The
fidelity is 0.96.

magnetic field and letting the state precess for a fraction
of a Larmor period. Figure 3 shows the measured density
matrices for four different precession angles.

It is desirable to also check the reconstruction of test
states that are not quasiclassical, and whose density matrix
exhibits large coherences far from the diagonal. One ex-
ample of such a state is jmy � 0�, which we can produce by
optical pumping on the F � 4 ! F0 � 4 transition with
linear polarization along ŷ. In this basis, the input state
has the density matrix shown in Fig. 4(a). Its representa-
tion in the �jmz�� basis is easily found by a (numerical)
rotation by 90± around x̂ [Fig. 4(c)], and can be directly
compared to the reconstruction [Fig. 4(d)]. To simplify the
visual comparison we finally rotate the measured density
matrix by 290± around x̂ to find its representation in the
�jmy�� basis [Fig. 4(b)]. The basis independent reconstruc-
tion fidelity is F � 0.96. The nonclassical nature of the
measured state is apparent in its Wigner function repre-
sentation [20], which takes on negative values as shown in
Fig. 5.

As a final test we have applied our procedure to the
(presumably) mixed states that result from laser cooling.

FIG. 5. (a) Measured jmy � 0� state, represented by the
Wigner function W �u, w� in spherical phase space. The darker
shading indicates negative values. Selected cuts of W �u, w�
along (b) w � 290± and (c) u � 90± (dotted lines � input
state, solid lines � measured state).
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FIG. 6. Mixed states: (a) input state from a near-resonance
lattice, and (b) measured result. The apparent coherences are
real and due to a 6.5± tilt of the lattice with respect to ẑ.
(c) Nearly maximally mixed state obtained from optical mo-
lasses, and (d) corresponding measured density matrix. The
respective fidelities are 0.99.

Figures 6(a) and 6(b) show the input and reconstructed
states produced by laser cooling in a 1D lin � lin lat-
tice. The input state shown here is based on a single
Stern-Gerlach measurement of the magnetic populations,
but it seems reasonable to assume that the highly dissi-
pative laser cooling process destroys coherences between
magnetic sublevels and that the density matrix is diago-
nal. Our measurement confirms this assumption. We can
perform the same experiment with atoms released directly
from a 3D optical molasses, in which case there is no pre-
ferred spatial direction and one expects something close to
a maximally mixed state. Figures 6(c) and 6(d) show in-
put and measured density matrices in good agreement with
this assumption.

In summary we have demonstrated a method to experi-
mentally determine the complete density matrix of a large
angular momentum, and tested its performance with a va-
riety of angular momentum quantum states of an ensemble
of laser cooled Cesium atoms. The input and recon-
structed density matrices typically agree with a fidelity of
F * 0.95. Fidelities less than 1 reflect imperfect mea-
surements or, in some cases, could result from imperfect
knowledge of the input state. Limitations on the accu-
racy to which the density matrix can be measured appear
to derive from �3% uncertainties in the individual popu-
lation measurements, and from variations in the direction
of the bias magnetic field during the first few ms when it
is turned on. These variations are likely due to induced
currents in metal fixtures and coils in the vicinity of our
glass vacuum cell, and translate into uncertainty about the
exact orientation of the quantization axes for the Stern-
Gerlach measurements. Efforts are underway to elimi-
nate these problems and achieve even better reconstruction
fidelities.
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