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Colloidal suspensions with free polymer coils which are larger than the colloidal particles are consid-
ered. The polymer-colloid interaction is modeled by an extension of the Asakura-Oosawa model. Phase
separation occurs into dilute and dense fluid phases of colloidal particles when polymer is added. The
critical density of this transition tends to zero as the size of the polymer coils diverges.
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By the addition of nonadsorbing polymer, colloidal
suspensions can be made to separate into a dilute phase, a
colloidal “vapor,” and a dense phase, a colloidal “liquid”
[1]. Nonadsorbing polymer does not adsorb onto the sur-
faces of the particles; the interaction between a monomer
and a colloidal particle is repulsive. The colloidal par-
ticles are spheres of diameter s, and we can characterize
the size of a polymer coil with its root-mean-square
end-to-end separation, RE . For polymer coils smaller than
the particles, RE , s, the polymer-colloid interaction is,
to a not unreasonable first approximation, a hard-sphere
repulsion: the Asakura-Oosawa (AO) model [2,3]. For
values of RE�s � O�0.1�, it has been found that to a
good approximation the effect of the polymer is to create
a short-ranged, range R � s 1 RE , pairwise additive
attraction between the colloidal particles [4,5]. If this
range is not too short, it induces a phase separation into
dilute and dense fluid phases of the colloidal particles. In
the other limit, that of large values of the ratio RE�s, it
is known that the polymer creates an effective attraction
between the colloidal particles but that this is not pairwise
additive [4,6]. Here, we extend the Asakura-Oosawa
model to deal with values of RE�s . 1, and then go
on to show that the phase behavior for large RE�s is
very different from that induced by a pairwise additive
attraction. As RE ! ` the colloid density at the critical
point tends to zero, whereas with a pairwise additive
attraction, however long the range of the attraction R, the
density at the critical point remains nonzero. A van der
Waals fluid has a pairwise additive attraction of infinite
range but a critical volume fraction of 0.13 [7]. The
colloidal particles can be smaller than the polymer coils
either because the particles are small, only a few nanome-
ters across, the typical size of a globular protein [8],
or the polymer coils are large, as they are for DNA [9].

The colloidal particles are modeled by hard spheres;
there are no attractions between them. The interaction
potential between two colloids, uCC , is then that between a
pair of hard spheres of diameter s. The polymer coils are
taken to be ideal and so do not interact with each other,
i.e., uPP�r� � 0, where r is the distance between their
centers. For the interaction between a colloidal particle and
a polymer coil, uCP , we start from the Asakura-Oosawa
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model [2,3],

uCP�r� �

Ω
` r , �s 1 sP��2
0 r $ �s 1 sP��2 , (1)

where sP is an effective diameter of the polymer coil; it
is close to RE , the root-mean-square end-to-end separation
of the polymer. The polymer does not adsorb onto the par-
ticles; the interaction between a monomer and the surface
of a particle is repulsive. When the polymer is no larger
than the colloid the Asakura-Oosawa model is reasonable.
In the limit s ¿ RE , the colloidal particle resembles a
hard planar wall on the relevant length scale for the poly-
mer, RE , and a hard wall excludes a polymer from a slab
of height of order RE [10,11]. However, in the opposite
limit, that of RE ¿ s, the Asakura-Oosawa model is in-
correct; it predicts that a particle excludes a polymer coil
from a volume of R3

E , whereas if RE is much larger than
the diameter of the colloid the colloid-polymer interaction
must be extensive in the length of the polymer. For an ideal
polymer RE � an1�2, where a is the monomer length and
n is the number of monomers. The interaction must be ex-
tensive in n and so scales as R2

E not R3
E [10,11]. Thus, we

cannot use the Asakura-Oosawa model for long polymers.
We propose an extended Asakura–Oosawa model to deal
with the case RE . s. Figure 1 is a schematic of the pro-
posed model.

First, we rescale the monomer size to the colloid diame-
ter s [12]. As both RE and the exponent of one-half
remain constant when we rescale the monomer size, we
have R2

E � a2n � s2nB, where nB is the number of blobs:
effective monomers of length s. This yields

nB � R2
E�s2, nB $ 1 . (2)

So, we now have a polymer of nB blobs, each of which is s

across. Each of these blobs is no larger than the colloidal
particle so the Asakura-Oosawa interaction, Eq. (1), is a
reasonable (although not a quantitative) description of the
interaction of a single blob with a colloid. Thus, our model
for a long polymer is an ideal chain of blobs of diameter
s, each of which interacts with a colloidal particle with an
interaction potential given by Eq. (1) with sp � s.

For ideal polymers, when calculating phase diagrams,
it is simplest to work in a semigrand ensemble [4,13,14].
© 2001 The American Physical Society
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FIG. 1. A schematic of the extended Asakura-Oosawa model.
The black disks represent the colloids and the curve represents
a polymer coil. The rescaled monomers used to estimate the
polymer-colloid interaction are drawn as dashed circles.

This is an ensemble in which the variables are the volume,
V , the number of colloidal particles, NC , and the activity
of the polymer, z. As all our interactions are athermal, the
temperature T is a not a relevant variable. For simplicity
we will use units such that the thermal energy kT � 1. The
number density of the colloidal particles rC � NC�V . We
use a reduced density for the colloidal particles, the volume
fraction h � �p�6� �NC�V �s3, and a reduced activity of
the polymer z� � zR3

E . We also define a reduced density
of polymer, r� � rPR3

E , where rP is the number density
of polymer coils. The colloidal volume fraction is close to
one-half when the colloid (in the absence of polymer) crys-
tallizes, and r� is close to one when the polymer coils start
to overlap, and is less than one in the dilute regime [12].

The semigrand potential per colloidal particle v is
[1,4,5,13,14]

v�h, z� � aHS�h� 2 �z�rC�a�h; nB� , (3)

where aHS is the Helmholtz free energy per particle of
hard spheres, and a�h; nB� � exp�2mEX�h; nB��, with
mEX�h, nB� the excess chemical potential of a chain of nB

blobs in a system of hard spheres at a volume fraction h.
Equation (3) for the semigrand potential is approximate;
it is essentially the semigrand potential expressed as the
z � 0 limit (no polymer) plus a series expansion in pow-
ers of z, truncated after the first term. Thus, it becomes
less accurate as the polymer activity increases. It can be
derived in a couple of ways, see Refs. [1,4,5,13,14]. The
Carnahan-Starling equation of state [15] is known to be
accurate so we will use thermodynamic functions and cor-
relation functions derived from it. The density of polymer
coils when its activity is z� is

r� � z�a�h, nB� , (4)

which is just the definition of the excess chemical potential,
rearranged.

If nB � 1, then the polymer-colloid interaction is mod-
eled by just one hard sphere of diameter s, as in the
original Asakura-Oosawa model. Then mEX is just the
excess chemical potential of hard spheres, which may
be easily derived from the Carnahan-Starling equation of
state. For nB . 1 we require the excess chemical potential
of a chain of blobs. Fortunately the problem of calculating
this quantity has occurred in the treatment of dense liquids
of oligomers, such as alkanes, and polymer melts. One of
the best known theories is that of Wertheim [16], which he
termed thermodynamic perturbation theory 1 (TPT1). Its
prediction for mEX�h, nB� is [16–18]

mEX � nBm
�HS�
EX 2 �nB 2 1�

∑
lngHS 1

h

gHS

µ
dgHS

dh

∂∏
,

(5)

where m
�HS�
EX and gHS are the excess chemical potential and

pair distribution function at contact, respectively, of hard
spheres. mEX is the work done in inserting a chain of
nB spheres of diameter s into the fluid of hard spheres,
which is equal to the work done in inserting nB widely
separated spheres [the first term on the right-hand side of
Eq. (5)] plus the work done in bringing the nB spheres
together into a linear chain of spheres at contact (the sec-
ond term) [18]. The accuracy of the extended AO model
plus TPT1 can be assessed by comparing its prediction
for the virial coefficient of the interaction between a hard
sphere and a polymer coil, with the exact field theory pre-
diction, Eq. (3.11) of Ref. [10]. When RE � s the AO
model overpredicts by a factor of 1.4. For large RE�s the
leading order term in our prediction is �p�2�R2

Es, whereas
field theory yields a value which is two-thirds of this. The
extended AO model 1 TPT1 overpredicts the interaction
by 50% for large RE .

Equations (3) and (5) are all that is required to calculate
the phase diagram in the h-z� plane. Then Eq. (4) can be
used to calculate the polymer density from its activity and
so these diagrams may be mapped onto the h-r� plane.
Phase diagrams for nB � 5 are shown in Fig. 2. This
corresponds to RE �

p
5 s; the end-to-end separation of

the polymer is a little over twice the diameter of the colloid.
The density of polymer coils decreases exponentially

with increasing colloid volume fraction, with a coefficient
in the exponential which is linear in nB [Eq. (5)]. Thus
for polymers which are several blobs long, the polymer
density at a polymer activity z� � O�1� and at high col-
loid volume fractions, h * 0.3, is extremely small. Thus,
crystallization of the colloid takes place in the presence of
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FIG. 2. The phase diagram of a colloid 1 polymer mixture,
with a polymer of nB � 5 blobs of diameter equal to that of the
colloid. (a) is the diagram in the h-z� plane, and (b) is it in the
h-r� plane. The dashed lines are tie lines connecting coexisting
phases and the circle in (b) marks the critical point.

almost no polymer and so occurs very close to its value for
hard spheres, which is h � 0.49 [19], so is almost com-
pletely unaffected at these polymer activities. We do not
show the crystallization transition in Fig. 2 because it is
at much higher densities than the vapor-liquid transition,
but the density of the fluid phase which coexists with the
crystalline phase is essentially a vertical line at a volume
fraction of 0.49.

In Fig. 2 the volume fraction of the colloid at the criti-
cal point is very low. The density range of the colloidal
liquid is very large, from the volume fraction at the critical
point, 0.048, to 0.49. In Fig. 3 we have plotted the volume
fraction of the colloid at the critical point, hCP , as a func-
tion of polymer size, nB. For large nB, it decreases as n21

B

�R22
E �. Thus it tends to zero as RE ! `, unlike the case for

a pairwise additive attraction where as its range R ! `,
the volume fraction at the critical point tends to 0.13.
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FIG. 3. The volume fraction of colloidal particles at the fluid-
fluid critical point, hCP , as a function of the size of the polymer,
measured by nB.

The mixture phase separates into colloid-rich (polymer-
poor) and colloid-poor (polymer-rich) phases at very low
colloid concentrations when the polymer is larger than
the colloid. The reason for the n21

B scaling is clear from
Eqs. (4) and (5). The phase with the higher colloid density,
the colloidal liquid, must have a sufficiently high density
that at fixed z� the polymer density is significantly below
that in colloidal vapor. Now, from Eq. (4) we see that
this requires a mEX which is at least of order unity (re-
call that kT � 1) in the liquid phase. At low colloid den-
sity mEX � �A 1 BnB�h 1 O�h2�, where A and B are
constants. Thus, the colloidal volume fraction at which
mEX � 1 varies as 1��A 1 BnB�, which gives rise to a
critical density with the same scaling. A critical volume
fraction scaling as R22

E is consistent with work on a poly-
mer molecule in the presence of a density of fixed obstacles
[20] which finds that the reduction in entropy of the poly-
mer molecule is of order 1 when the number density of
obstacles of diameter s is of order 1��sR2

E�.
A further point to note is that as the activity of the

polymer is increased the density of the colloid-rich phase
increases rather slowly [21]. In Fig. 2, even when the poly-
mer activity is twice that at the critical point, the colloid
volume fraction in the colloid-rich phase is only around
0.15. Ultimately, we expect that if the polymer activity is
high enough there will be a triple point, where the dense
fluid is sufficiently dense that it coexists not only with
a dilute fluid phase but with a crystalline phase. How-
ever, this will be for much larger polymer activities than
shown in Fig. 2. The polymer density in the colloid-poor,
polymer-rich phase will be many times the overlap con-
centration, r� � 1. Although simultaneous coexistence of
dilute and dense fluid phases and a crystalline phase have
been observed in experiment for colloid 1 polymer mix-
tures [1], this has been for values of RE no larger than the
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colloid diameter. Observing simultaneous coexistence of
these three phases in experiment may be difficult if RE is
significantly greater than the colloid diameter.

In the limit of short polymers, RE a few tenths of s

or less, the effect of polymer is to induce an attraction
which is short ranged, R � s 1 RE , and to a good ap-
proximation pairwise additive [5]. If the phase diagrams
for colloid 1 short polymer [4,13], and for particles with
a short-ranged pairwise additive attraction [22], are com-
pared they are seen to be qualitatively the same. In both
cases as RE or R shrinks, fluid-fluid coexistence disap-
pears from the equilibrium phase diagram. Thus, assuming
that free polymer is equivalent in effect to a pair attraction
between colloidal particles is a reasonable assumption for
small values of RE�s but not for large values.

We have proposed an extended Asakura-Oosawa model
to model the interaction between colloidal particles and
ideal nonadsorbing polymer coils with end-to-end separa-
tions RE larger than the diameter of the colloidal particle
s. For a globular protein with a diameter of a few nanome-
ters, this would mean a polymer molecule with an RE of
5 nm or more. As with smaller polymer coils [13], the
polymer induces a vapor-liquid-like separation into two
fluid phases: one rich in colloid (a colloidal liquid) but
poor in polymer and one poor in colloid (a colloidal “gas”)
but rich in polymer. We showed that the critical point of
this transition moves to lower and lower colloid densities
as the polymer coils become larger. This is qualitatively
different from what would be found if the effect of poly-
mer was to induce a pairwise additive attraction between
the colloidal particles. Let us compare the variation of the
colloid density at a critical point induced by a pairwise
additive attraction of varying range, R, with that induced
by a polymer of varying size, RE . We find that for small
R or RE the variation of the critical density is similar in
both cases. The critical density increases [13,22,23] as R
or RE shrinks; if not preempted by crystallization it tends
to the random-close-packed density of hard spheres as R
or RE ! 0 [23]. However, in the other limit, that of large
R or RE , the variation in the critical density is very dif-
ferent in the two cases. With a pairwise additive potential
it shrinks to 0.13 [7] as R ! ` and then goes no lower,
whereas with polymer coils, the present theory predicts
that the critical density tends to zero as RE ! `.
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