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Dielectric Catastrophe at the Mott Transition
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We study the Mott transition as a function of interaction strength in the half-filled Hubbard chain with
next-nearest-neighbor hopping t0 by calculating the response to an external electric field using the density
matrix renormalization group. The electric susceptibility x diverges when approaching the critical point
from the insulating side. We show that the correlation length j characterizing this transition is directly
proportional to fluctuations of the polarization and that x � j2. The critical behavior shows that the
transition is infinite order for all t0, whether or not a spin gap is present, and that hyperscaling holds.

DOI: 10.1103/PhysRevLett.86.468 PACS numbers: 71.10.Fd, 71.30.+h, 75.40.Cx
A material’s response to an applied electric field char-
acterizes whether it is a metal or an insulator. One such
response is the static electrical conductivity at zero tem-
perature, which is finite for a metal (or infinite for an ideal
conductor), but vanishes for an insulator [1]. The conduc-
tivity can therefore be used to probe the metal-insulator
transition from the metallic side. A complementary quan-
tity is the dielectric response to an electric field, the electric
susceptibility, x . This quantity is expected to diverge (for
a continuous transition) when the transition is approached
from the insulating side and to remain infinite in the metal-
lic phase. This phenomenon, termed “dielectric catastro-
phe” by Mott [2], has been reported for doped silicon [3].

One possible origin of insulating behavior is the local
Coulomb repulsion between electrons. This “Mott phe-
nomenon” [4] leads to a metal-insulator transition which
occurs either as the electron density, n, is varied for fixed
electron-electron interaction strength or as a function of
interaction strength at fixed electron density [2,5]. In this
Letter, we concentrate on the transition as a function of
interaction strength for fixed electron density. Experimen-
tally, such a transition can be induced by applying isostatic
or chemical pressure.

The prototype model for the Mott transition is the single-
band Hubbard model with purely local interaction, whose
Hamiltonian is

Ĥ � 2
X
ijs

tij ĉ
y
is ĉjs 1 U

X
i

n̂i"n̂i# , (1)

where ĉ
y
is creates an electron of spin s at site i and

n̂is � ĉ
y
is ĉis . The hopping matrix elements tij are short

ranged. At half filling, n � 1, the Hamiltonian (1) maps
onto a Heisenberg model with couplings Jij � 4t2

ij�U for
U ! ` and is thus insulating, while at U � 0, it describes
a perfect metal. Therefore, a Mott transition must occur at
some Uc $ 0 [6].

In order to describe the dielectric response of such a
system, one must consider the coupling to a static electric
field. Taking the field in the x direction and neglecting
overlaps between different Wannier functions (tight-
binding approximation), we add the coupling term
0031-9007�01�86(3)�468(4)$15.00
Ĥext � 2EX̂ � 2E
X

i

xin̂i , (2)

where X̂ is the dipole operator (we have put q � 1), xi is
the x coordinate of the ith site, and n̂i measures the occu-
pation of this site. Here we have assumed that the finite
lattice has open boundary conditions, i.e., the connections
terminate at the lattice edges. We note that while this is the
natural definition for experiments, the notion of response
to an applied electric field has recently been generalized to
periodic boundary conditions [7]. An applied electric field
will induce a polarization at zero temperature given by

P � L2d�X� � 2L2d ≠E0

≠E
(3)

on a d-dimensional lattice with linear dimension L, where
the average is taken with respect to the ground state of
the full Hamiltonian Ĥ 1 Ĥext, with corresponding energy
E0. The zero-field susceptibility is then defined as

x �
≠P
≠E

Ç
E�0

� 2L2d ≠2E0

≠E2

Ç
E�0

. (4)

The examination of the properties of this susceptibility in
the vicinity of the Mott metal-insulator transition is the
principal aim of this Letter.

The susceptibility x can be related to the eigenstates
jCn� of Ĥ using elementary perturbation theory,

x � 2L2d
X
nfi0

j�C0jX̂jCn�j2

DEn
, (5)

where DEn is the excitation energy of the nth eigenstate.
(Here we have chosen the origin of the coordinate system
so that �X� � 0 for E � 0.) This relation immediately
yields a useful inequality in terms of the “charge gap,”
D (defined as the lowest excitation energy for which the
dipole matrix element does not vanish):

x #
2
D

L2d�C0jX̂
2jC0� . (6)

It is thus instructive to consider fluctuations of the polar-
ization, �C0jX̂2jC0�, which can be estimated as follows.
We expand the ground state as a series jC0� �

P
D jC

�D�
0 �,

where D is the number of doubly occupied sites (“par-
ticles”). At large U the particles are located close to
© 2001 The American Physical Society
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empty sites (“holes”). Each particle-hole pair represents
an elementary dipole with essentially random orientations.
Therefore our estimate is

�C0jX̂
2jC0� �

X
D

�C�D�
0 jX̂2jC

�D�
0 � � �D�l2, (7)

where l is the average size of the dipoles. Comparing
this result with the inequality in Eq. (6), we conclude that
a diverging susceptibility requires either a diverging size
of the dipoles or a vanishing charge gap or both. In one
dimension, the quantity

j �
1
L

�C0jX̂
2jC0� (8)

is a length characterizing the insulating phase [8,9]. We
will show below that j is the correlation length, up to a
dimensionless constant.

On regular lattices, one often faces the problem that the
Mott phenomenon, which sets in at large values of U due to
charge blocking, is masked by the opening of a charge gap
at much lower values of U due to antiferromagnetic order
induced by nesting or umklapp processes. In order to con-
trol such effects, we consider here a model that explicitly
incorporates frustration of antiferromagnetism, namely,
the one-dimensional Hubbard model with both nearest-
neighbor t and next-nearest-neighbor t0 hopping terms.
We set t � 1 and consider only t0 $ 0 here because the
sign of t0 is irrelevant at half filling due to particle-hole
symmetry. For t0 � 0, the Bethe-ansatz solution allows
one to calculate the charge gap [10], the charge stiffness,
and the correlation length in the insulator [11] explicitly.
The system is found to be insulating for all positive values
of U. The metal-insulator transition occurs at Uc � 0 and
is infinite order: the charge gap and, correspondingly, the
inverse of the correlation length decrease exponentially
as U ! 01. At the same time, the magnetic correlations
show a power-law decay. For t0 . 0, a weak-coupling
renormalization group analysis [12] predicts the same
behavior as long as there are two Fermi points: umklapp
processes lead to an insulating state for U . 0, while the
magnetic excitation spectrum remains gapless.

For t0 . 0.5, there are four Fermi points in the non-
interacting band structure and the picture becomes more
complicated. In weak coupling, the lowest-order umklapp
processes are marginally irrelevant [12], and the system
is predicted to be metallic (vanishing charge gap) with a
spin gap. At strong coupling, the model can be mapped to
a frustrated Heisenberg chain, which develops a spin gap
for J 0�J � t02 . 0.2412 [13] and incommensurate anti-
ferromagnetic order for J 0�J . 0.5. This general picture
has been confirmed numerically [14,15]. For a detailed
phase diagram, we refer the reader to Fig. 3 of Ref. [15].
Here we will examine both the parameter regime with gap-
less magnetic excitations and Uc � 0 �t0 & 0.5� and the
one with gapped spin degrees of freedom and Uc . 0
�t0 * 0.5�.
In order to numerically evaluate the electric suscepti-
bility, Eq. (4), we use the density matrix renormalization
group (DMRG) [16]. We apply a small electric field so
that the system is in a linear response regime (as deter-
mined by a careful analysis of the E dependence, typically
EL � 0.001) and measure

x �
P
E

�
1

LE

X
i

xi�n̂i� . (9)

We use the finite-size DMRG algorithm [16,17] on up to
L � 1000 sites, retaining up to 2400 states for the system
block. This allows us to keep the sum of the discarded den-
sity matrix eigenvalues to below 1028. We have performed
extensive tests for U � 0, a difficult case to treat numeri-
cally, and find that we can reproduce analytic results to
within less than 1%. The details of the calculations will be
described more extensively elsewhere.

The electric susceptibility x is shown in Fig. 1 as a func-
tion of the inverse system size for t0 � 0.7 and a number
of U values. There are two characteristically different be-
haviors: at small U, the system is metallic, and the sus-
ceptibility diverges with system size. A fit to a power law
in L yields an exponent very close to 2 (within 5%) for the
small U values. For U � 0, it can be shown analytically
that x � L2 for large L for all values of t0. We conjec-
ture that such a L2 divergence of x is generic for a one-
dimensional perfect metal. For larger U, x extrapolates to
a finite value as L ! `. While this is clear for the two
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FIG. 1. Electric susceptibility, x, as a function of 1�L for t0 �
0.7 and U � 1 (circles), U � 2.5 (stars), U � 4 (diamonds),
U � 5.5 (crosses), and U � 7 (squares).
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larger U values in Fig. 1, care must be taken near the tran-
sition because the system appears metallic up to a length
scale on the order of the correlation length which diverges
at the transition. Such a crossover from metallic to insu-
lating behavior is evident in the U � 4 curve, for which
we have taken lattice sizes of up to L � 100 to show that
x scales to a finite value, i.e., that the system is insulating.

In the insulating regime, we expect x to be analytic in
1�L. We therefore perform finite-size scaling for large
L using a linear fit and extrapolating to 1�L � 0. The
result, x`, is shown in Fig. 2 for t0 � 0, 0.7, and 0.8 as a
function of U. Calculations for additional values of t0 (0.3,
0.4, 0.5, 0.6, 0.75, 0.85, 0.9, and 1) are consistent with
Fig. 2. For t0 � 0, the transition takes place at Uc � 0,
as discussed previously. Although we could not obtain
a reliable finite-size extrapolation for U & 2 because the
correlation length becomes much larger than the system
sizes we were able to reach, we could observe numerically
that x � D22 (for U & 10), where D is the charge gap
given in Ref. [10]. The extrapolation to D ! 0 confirms
that Uc � 0. Alternatively, we can fit to the low-U form
for D22,

x`�t0 � 0� �
A

U 2 Uc
exp

∑
B

�U 2 Uc�s

∏
, (10)

with the exactly known values B � 4p � 12.566, . . . ,
and s � 1; here the prefactor 1��U 2 Uc� comes from
the logarithmic correction. This yields Uc 	 0.058 and
we effectively find that Uc � 0 to within error bars. A
fit to the form without the logarithmic correction would
yield Uc 	 0.209, which is also consistent with zero, but
to within a larger error bar.

It is clear from Fig. 2 that the bigger t0, the larger the U
at which x diverges. However, one must perform careful
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FIG. 2. Electric susceptibility x`�U, t0� of the infinite-size sys-
tem for t0 � 0, 0.7, and 0.8, as a function of U; the lines are
guides to the eye. Inset: x`�U, t0 � 0.7� for U � 4.1 to 4.4
(squares) as a function of 1��U 2 Uc�, on a semilog scale. The
line is a fit to an exponential form.
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fitting in order to accurately determine Uc and the form
of the divergence at t0 . 0, as an analytical result for the
charge gap exists only at t0 � 0. For t0 � 0.7, we have
calculated x at many U values near the transition and have
fitted to both power law, x � �U 2 Uc�g and exponential
forms [Eq. (10)], but without the logarithmic correction.
The logarithmic corrections are, in general, nonuniversal,
i.e., t0 dependent. Leaving these corrections out, as argued
above, will only make the determination of Uc less precise.
We find that the fit to the power-law form yields Uc 	 3.4,
a point at which careful finite-size scaling of x yields
a finite value of x`. Therefore, this Uc is clearly too
large. The exponential fit yields s 	 1.049, B 	 12.45,
and Uc 	 2.67, a more reasonable value of Uc. Note
that the values for s and B are again very close to the
ones obtained for t0 � 0. The inset of Fig. 2 shows a
semilog plot of x` vs 1��U 2 Uc� as well as the fit itself,
illustrating its good quality. We therefore find that the
exponential form, Eq. (10), expected in an infinite-order
transition, characterizes the transition at all t0, irrespective
of whether a spin gap exists or whether Uc is finite or zero.

If hyperscaling is valid, there is only one relevant length
scale j` (the correlation length for L ! `) in the vicinity
of the quantum critical point. This length then determines
the finite-size scaling of the singular part of the ground
state energy density [18]

E
sing
0 �Ld � j2�d1z�

` f�L�j`� , (11)

where z is the dynamic critical exponent and f a universal
scaling function. The quantity EL is an energy and there-
fore scales like j2z

` . Using Eq. (4), one obtains the scaling
behavior of the electric susceptibility

x � L21z2dCF�L�j`� , (12)

where C is a nonuniversal constant that depends on mi-
croscopic details, and F is a universal function [19]. The
hyperscaling assumption also implies that F tends to a fi-
nite value as L�j` ! 0. This is the region in which the
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FIG. 3. Scaling plots of x�L, U, t0��L2 vs L�j`�U, t0� in a
log-log scale: t0 � 0 (left); t0 � 0.8 (right).



VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001
0.01 0.1 1ξ∞

0.01

0.1

1

10

χ∞

t’=0
t’=0.7
t’=0.8

FIG. 4. Electric susceptibility x` versus correlation length j`

for different values of t0. Lines are power-law fits.

system appears metallic and in which x tends to scale like
L2. Note that this is the same L dependence as that in the
metallic phase. Thus z � 1 is the only consistent value
in Eq. (12), in agreement with exact results for t0 � 0
[11]. In the opposite limit, L�j` ! `, the system behaves
as an insulator for all sizes and x tends to a finite value
x`. The scaling form (12) with z � d � 1 thus implies
limx!` F�x� � A�x2 and

x` � CAj2
` , (13)

where A is a universal constant.
In order to confirm the scaling form Eq. (12) for our

model, we plot the DMRG results for x�L2 as a func-
tion of L�j` in Fig. 3. The quantity j` is obtained by
calculating j on finite systems using Eq. (8) and then per-
forming a finite-size extrapolation similar to that used to
obtain x`. Notice that all L and U points for a particular
t0 collapse onto the same curve, confirming hyperscaling.
Therefore, j` behaves as the correlation length, which we
have checked by ascertaining that j` is the same length
(up to a constant) that characterizes the exponential decay
of the density-density correlation function.

The results of the 1�L extrapolation for x and j

are shown in Fig. 4 for three different values of t0. A
power-law fit to x` � C0j

g̃
` yields g̃�t0 � 0� 	 1.97,

g̃�t0 � 0.7� 	 2.01, g̃�t0 � 0.8� 	 1.96, and C0�t0 �
0.7��C0�t0 � 0� 	 1, C0�t0 � 0.8��C0�t0 � 0� 	 0.7.
This confirms the scaling behavior (13). It also shows that
the constant C depends weakly on t0.

In summary, our calculations for the U 2 t 2 t0 chain
at half filling confirm that the electric susceptibility x (and
therefore also the dielectric constant ´ � 1 1 4px) di-
verge when approaching the Mott transition from the in-
sulating side. The polarization fluctuations, which also
diverge for U ! Uc from above, have been found to be
directly proportional to the correlation length j of the
Mott insulating phase. In agreement with the hyperscal-
ing hypothesis, the metallic or insulating behavior of the
finite-size system depends only on the ratio L�j`. The
finite-size scaling of x can then be related to a universal
scaling function and a dynamic exponent z � 1. The tran-
sition is found to be infinite order and to show the same
critical behavior whether there is a spin gap or not. As
to the origin of this dielectric catastrophe, we conclude,
on the basis of both the inequality x # 2j�D and the ob-
served scaling x` � j2

`, that it involves both a diverging
correlation length j (linked to the unbinding of dipoles)
and a vanishing of the charge gap D.
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