Unique Spin Dynamics and Unconventional Superconductivity in the Layered Heavy Fermion Compound CeIrIn₅: NQR Evidence

G.-q. Zheng, ¹ K. Tanabe, ¹ T. Mito, ¹ S. Kawasaki, ¹ Y. Kitaoka, ¹ D. Aoki, ² Y. Haga, ³ and Y. Onuki ²

¹Department of Physical Science, Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan

²Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

³Advanced Science Research Center, Japan Atomic Energy Research Institute, Tokai, Ibaraki 319-1195, Japan

(Received 1 November 2000; revised manuscript received 14 February 2001)

We report measurements of the ¹¹⁵In nuclear spin-lattice relaxation rate $(1/T_1)$ between T=0.09 and 100 K in the new heavy fermion (HF) compound CeIrIn₅. At $0.4 \le T \le 100$ K, $1/T_1$ is strongly T-dependent, which indicates that CeIrIn₅ is much more itinerant than known Ce-based HFs. We find that $1/T_1T$, subtracting that for LaIrIn₅, follows a $(\frac{1}{T+\theta})^{3/4}$ variation with $\theta=8$ K. We argue that this novel feature points to anisotropic, due to a layered crystal structure, spin fluctuations near a magnetic ordering. The bulk superconductivity sets in at 0.40 K below which the coherence peak is absent and $1/T_1$ follows a T^3 variation, which suggests unconventional superconductivity with line-node gap.

DOI: 10.1103/PhysRevLett.86.4664 PACS numbers: 74.25.Ha, 74.70.Tx, 76.60.Gv

The emergence of superconductivity near a magnetic instability in cerium (Ce)-based heavy fermion (HF) compounds is one of the most intriguing phenomena in strongly correlated electron systems. Except for CeCu₂Si₂ which is superconducting at ambient pressure with $T_c = 0.65 \text{ K}$ [1], the superconductivity emerges near the quantum critical point (QCP) where the magnetic ordering is suppressed by large applied external pressure in CeIn₃ [2], CeCu₂Ge₂ [3], CePd₂Si₂ [4], and CeRh₂Si₂ [5]. In spite of efforts and progress, however, knowledge about this class of superconductors is still limited because of difficult experimental conditions. The recently discovered new family of Ce-based heavy electron systems, CeMIn₅ (M = Rh, Ir) with M = Ir being a superconductor already at ambientpressure [6,7], provides new opportunities for studying the nature of the superconductivity in the vicinity of a magnetic instability, the interplay between magnetic excitations and superconductivity, etc. In particular, CeIrIn₅ is suitable for studies using microscopic experimental probes that can be applied more easily at ambient pressure.

CeMIn₅ (M = Rh, Ir) consists of alternating layers of CeIn₃ and MIn₂. CeRhIn₅ is an antiferromagnet with $T_N = 3.8 \text{ K}$ but becomes superconducting below $T_c = 2.1 \text{ K}$ under a moderate pressure of 1.6 GPa [6]. In CeIrIn₅, the resistivity is already zero at ambient pressure below 1.2 K, but the Meissner effect and the jump in the specific heat are found only at 0.4 K [7]. The electronic specific heat coefficient γ is found to be 750 mJ/mol K² [7], which suggests a large mass enhancement. Recent de Haas–van Alphen oscillation in CeIrIn₅ also reveals a cyclotron mass that is ~20 times larger than the band mass, consistent with the specific heat result [8].

In this Letter, we report a measurement using local probe, the 115 In nuclear quadrupolar resonance (NQR) study in CeIrIn₅ down to 90 mK, at zero magnetic field. From the temperature (T) dependence of the nuclear spin-lattice relaxation rate ($1/T_1$), we find that CeIrIn₅

is much more itinerant than known Ce compounds such as $CeCu_2Si_2$ [9], and show that this compound is located near a magnetic ordering with anisotropic spin fluctuations due to the layered crystal structure. No anomaly was found at 1.2 K in the NQR quantities, but $1/T_1$ shows an abrupt decrease at 0.40 K below which the NQR intensity also decreases as does the ac susceptibility, confirming a bulk superconductivity below $T_c = 0.40$ K. The lack of coherence peak in $1/T_1$ just below $T_c = 0.40$ K followed by a power-law T variation, $1/T_1 \propto T^3$, indicates that the superconductivity is of unconventional type with an anisotropic gap. Our results show that $CeIrIn_5$ bears some resemblance to itinerant, quasi-two-dimensional high- T_c copper oxides.

The single crystal of CeIrIn₅ was grown by the In-flux method as in Ref. [6]. X-ray diffraction indicated that the compound is single phase and forms in the primitive tetragonal HoCoGa₅ type structure. The resistivity already drops to zero at 1.2 K, which is in agreement with the reported property [7]. The single crystal was crushed into powder to allow a maximal penetration of oscillating magnetic field, H_1 . The measurements below 1.4 K were performed by using a ³He/⁴He dilution refrigerator. A small H_1 was used to avoid possible heating by the rf pulse. There are two inequivalent crystallographic sites of In in this compound, In(1) in the CeIn₃ plane and In(2) in the IrIn₂ plane. Two sets of In NQR lines corresponding to these two sites were observed as shown in Fig. 1. The first set of the NQR lines that are equally spaced is characterized by $\nu_Q = 6.065 \pm 0.01 \, \mathrm{MHz}$ and the asymmetry parameter $\eta = 0$. The second set of lines that are unequally spaced was found at the positions centered at 33.700, 38.350, 52.185, and 71.432 MHz, respectively, which correspond to $\nu_Q = 18.175 \pm 0.01 \text{ MHz}$ and $\eta=0.462\pm0.001$. Here ν_Q and η are defined as $\nu_Q\equiv\nu_z=\frac{3}{2I(2I-1)h}e^2Q\frac{\partial V}{\partial z}$, and $\eta=|\nu_x-\nu_y|/\nu_z$, with Q being the nuclear quadrupolar moment, I=9/2

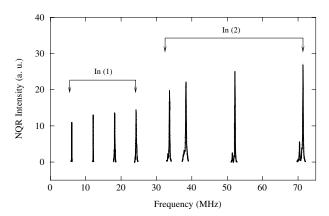


FIG. 1. Two sets of 115 In NQR lines observed at T=4.2 K corresponding to the In(1) site in the CeIn₃ plane and the In(2) site in the IrIn₂ plane. The small peaks to the left of each line of In(2) are from the less abundant isotope 113 In.

being the nuclear spin, and $\frac{\partial V}{\partial \alpha}(\alpha = x, y, z)$ being the electric field gradient at the position of the nucleus [10]. The symmetric lines are assigned to the In(1) site and the asymmetric lines to the In(2) site, respectively, since the crystallographically In(1) site is axially symmetric but In(2) is not. This assignment is consistent with the observation in CeIn₃ where η is zero [11]. ν_O for In(1) is smaller, but ν_O for In(2) is larger by about 10% than the respective values in CeRhIn₅ [12]. The transition lines are narrow with the full width at half maximum (FWHM) being ~50 kHz, which indicates a good quality of the crystal. $1/T_1$ measurements were done mostly on the $1\nu_O(\pm 1/2 \leftrightarrow \pm 3/2)$ transition at low T but at the $4\nu_O(\pm 7/2 \leftrightarrow \pm 9/2)$ transition at high T for the In(1) site. The value of $1/T_1$ was obtained from the recovery of the nuclear magnetization following a single saturation pulse and an excellent fitting to the equations given by MacLaughlin [13]. The value of $1/T_1$ measured at different transitions shows excellent agreement.

Figure 2 shows $1/T_1$ as a function of T in the temperature range of $0.09 \le T \le 100$ K. We discuss the normalstate property above T_c first. Remarkably, $1/T_1$ shows strong T dependence up to the highest temperature that we have measured, 100 K. This is to be compared to other Ce compounds, such as $CeCu_2Si_2$ where $1/T_1$ becomes T independent above ~ 10 K [9], which is assigned to be the Kondo temperature, T_K below which the localized 4fmoment is screened to produce a heavy quasiparticle state. This result indicates that CeIrIn₅ is much more itinerant than other known Ce compounds. In Fig. 3, we plot $1/T_1T$ as a function of T. The inset shows a log-log plot that displays more clearly the behavior just above T_c . For comparison, we also show the data $1/T_1T = 0.81 \text{ sec}^{-1} \text{ K}^{-1}$ for LaIrIn₅ where no 4f spins are present. The measurement for LaIrIn₅ was carried out at $4\nu_O = 23.77$ MHz. It is seen that $1/T_1T$ of CeIrIn₅ is largely enhanced over that of LaIrIn₅ and increases strongly with decreasing

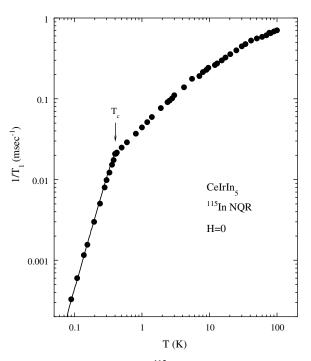


FIG. 2. T dependence of the ¹¹⁵In nuclear spin-lattice relaxation rate. The solid curve is a calculation by assuming a line-node gap $\Delta(\phi) = \Delta_0 \cos \phi$ with $\Delta_0 = 2.5 k_B T_c$ (see text for detail).

Also note that a $T_1T = \text{const}$ relation, that would be expected from the Landau-Fermi liquid theory, is not obeyed. These aspects indicate that $1/T_1$ in CeIrIn₅ is dominated by itinerant spin fluctuations (SFs). In fact, it was found more recently that substituting 40% of Rh for Ir results in an antiferromagnetic (AF) ordering of the system at $T_N = 2.7$ K [14], which also suggests that CeIrIn₅ is a nearly AF metal. In Fig. 4 we show T_1T as a function of T. The open circles above 0.4 K correspond to $1/T_1T = 1/T_1T(\text{CeIrIn}_5) - 0.81 \text{ sec}^{-1} \text{ K}^{-1} (\text{LaIrIn}_5)$, which represent the contribution due to the presence of Ce 4f spins alone. Note that this correction, by subtracting the relaxation of LaIrIn₅ which represents other relaxations including the In orbital contribution, is negligibly small for $0.4 \le T \le 15$ K. As seen in the figure, the data can be fitted to a relation of $T_1T = C(T + \theta)^{3/4}$ with $\theta = 8$ K and C = 4.75 msec K^{1/4} (solid curve).

This unique T dependence of $1/T_1T$ has never been observed in other HF compounds. We argue that this novel feature arises from *anisotropic* AF spin fluctuations, due to the *layered* crystal structure of CeIrIn₅. In d-electron, and also f-electron weak or nearly AF metals, many physical quantities can be explained by the self-consistent renormalization theory for SFs [15]. In this theory, it was shown that the staggered susceptibility at the AF wave vector q = Q, χ_Q (or the squared magnetic correlation length) follows a Curie-Weiss (CW) variation above the Néel temperature in a weak AF magnet due to mode-mode coupling of SFs, namely, $\chi_Q \propto \frac{1}{T+\theta}$. The value $|\theta|$ is just the Néel temperature (T_N) here. In a nearly AF metal

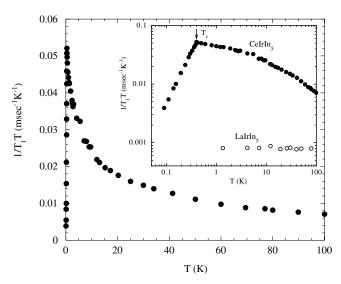


FIG. 3. The $1/T_1T$ of 115 In plotted as a function of T. The inset shows a log-log plot that emphasizes the low-T behavior just above T_c . Also shown, in the inset, are data for LaIrIn₅. A strong increase of $1/T_1T$ with lowing T points to the antiferromagnetic spin correlation.

that does not order at finite temperature, χ_Q is shown to also obey a CW variation, while in this case θ measures the closeness of a system to the magnetic ordering; θ decreases towards zero upon approaching the ordering. Now, by assuming $\chi(Q+q,\omega)^{-1}=\chi_Q^{-1}+aq^2-i\frac{\omega}{\Gamma}$ it is shown that $1/T_1T \propto \chi_Q$ for two-dimensional (2D) systems, but $1/T_1T \propto \sqrt{\chi_Q}$ for 3D systems [15]. Indeed, in many quasi-2D high- T_c cuprates it is found $1/T_1T \propto \frac{1}{T+\theta}$ where the value of θ decreases upon approaching the mag-

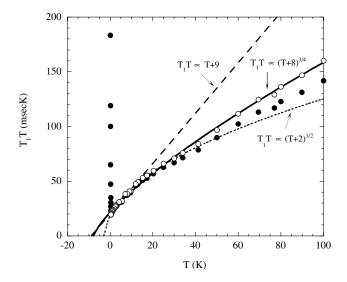


FIG. 4. T_1T plotted as a function of T. Solid circles are the raw data of CeIrIn₅, while open circles correspond to the normal-state relaxation rate subtracting that of LaIrIn₅. The broken line, solid, and dotted curves are the T variations of $T_1T \propto T + \theta$ (2D SFs), $T_1T \propto (T + \theta)^{3/4}$ (anisotropic SFs), and $T_1T \propto (T + \theta)^{1/2}$ (3D SFs), respectively.

netic ordering. For example, in the so-called overdoped compound TlSr₂CaCu₂O_{6.8} which is far away from the magnetic ordering, θ is 235 K [16]. In a less hole-doped system, $La_{2-x}Sr_xCuO_4$, $\theta = 120$ K for x = 0.24 while it decreases linearly with decreasing hole doping, reaching to $\theta = 20 \text{ K}$ at x = 0.075 [17]. In AF ordered 3D HF compounds, on the other hand, $1/T_1T \propto (\frac{1}{T+\theta})^{1/2}$ is well obeyed [18]. The predicted results by the 2D or 3D models are shown in Fig. 4. As can be seen in the figure, although both models capture the low-T behavior, neither of them fits the data in the high-T range. Let us now consider a situation where the dispersion of the SFs is in between 2D and 3D ones. If the SF dispersion in one direction is flat, namely, the magnetic correlation length (ξ) is much shorter in one direction than in the other, then by assuming $\chi(Q+q)^{-1}=\chi_Q^{-1}+a_1(q_x^2+q_y^2)+a_2q_z^4$ instead of isotropic quadratic dispersion [19], it is shown that $1/T_1T \propto \chi_Q^{3/4}$. This anisotropic SF model explained the dynamical susceptibility in d-electron antiferromagnet YMn₂, which orders at $T_N = 110$ K but the ordering can be suppressed either by applying external pressure or by substituting Sc for Y. In paramagnetic Y_{0.97}Sc_{0.03}Mn₂, the inelastic neutron scattering measurement found that ξ is shorter along the [001] direction ($\xi_{\perp} = 1.72 \text{ Å}$) than that along the [110] direction ($\xi_{\parallel} = 2.86 \text{ Å}$), which is ascribed to the geometrical frustration of the magnetic interaction [20]. Indeed, the same T variation as found here, namely, $\frac{1}{T_1T} \propto (\frac{1}{T+\theta})^{3/4}$ was observed in paramagnetic YMn₂ under pressure [21]. On the above basis, we propose that the T variation of $1/T_1T$, that can be fitted to $(\frac{1}{T+\theta})^{3/4}$ in the entire T range except near T_c , is due to anisotropic spin fluctuations in CeIrIn₅. In fact, CeIrIn₅ has a layered crystal structure. Because of this 2D-like structure, a weaker magnetic correlation along the c axis can be expected. Further investigation by an inelastic neutron scattering measurement would be interesting to confirm the SF dispersion in this compound. More systematic NQR/NMR study is also underway to see if the deviation of the low-T data from the anisotropic SF curve points to any possible crossover to a different SF regime upon lowering T. In any case, the small value of $\theta < 10$ K indicates that CeIrIn₅ is located in close proximity to the magnetic ordering. Finally, we remark that such strong SFs may also make an appreciable contribution to the huge specific heat.

Next, we discuss the superconducting (SC) state. First, as seen in Fig. 2, no anomaly was detected in $1/T_1$ around 1.2 K below which resistivity is zero. We also checked carefully the intensity and the linewidth of the NQR spectrum below 1.4 K; no anomaly is found when passing through 1.2 K. However, $1/T_1$ decreases abruptly at T = 0.40 K, below which the NQR intensity decreases as does the ac susceptibility due to the Meissner effect. These results indicate that the bulk superconductivity sets in at 0.40 K, which is in good agreement with the specific heat measurement [7]. The property of the SC state below

ible with the isotropic s-wave gap. Rather, our result is qualitatively similar to that in other HF superconductors, such as CeCu₂Si₂ [9], UBe₁₃ [22], etc. [23,18], and also high- T_c cuprate superconductors [24], which indicates that the SC energy gap is anisotropic. In terms of density of states (DOS), T_{1s} in the SC state is expressed as $\frac{T_{1N}}{T_{1s}} = \frac{2}{k_B T} \iint (1 + \frac{\Delta^2}{EE'}) N_s(E) N_s(E') f(E) [1 - f(E')] \delta(E - E') dE dE'$, where $N_s(E)$ is the DOS in the SC state, f(E) is the Fermi function, Δ is the energy gap, and $C = 1 + \frac{\Delta^2}{EE'}$ is called the coherence factor. In an isotropic s-wave superconductor, the divergence of N_s at $E = \Delta$ results in the coherence peak of $1/T_1$ just below T_c , and $1/T_1$ decreases as $\exp(-\Delta/k_BT)$ at low T because $N_s = 0$ for $E < \Delta$. In contrast, an anisotropic gap generally reduces the divergence of N_s and produces a finite DOS at low energy. For example, if we assume a line-node gap of $\Delta(\phi) = \Delta_0 \cos \phi$, then by integrating C and $N_s = \frac{N_0 E}{\sqrt{E^2 - \Delta(\phi)^2}}$ over ϕ we obtain C = 1, $N_s =$ $\frac{\pi}{2} \frac{N_0 E}{\Delta_0}$ for $E \leq \Delta_0$, and $N_s = \frac{N_0 E}{\Delta_0} \sin^{-1}(\frac{\Delta_0}{E})$ for $E \geq \Delta_0$. The finite value of N_s at $E = \Delta_0$ removes the coherence peak and the E-linear DOS below Δ_0 gives rise to a T^3 variation of $1/T_1$ at low T. The curve below T_c in Fig. 2 depicts the calculated result assuming the above model with $2\Delta_0 = 5.0k_BT_c$ and a BCS T dependence for Δ_0 . This gap amplitude Δ_0 is about the same as that for CeCu₂Si₂ to which should the same model be applied. It is, however, substantially smaller than that in some uranium (U)-based HF superconductors where $2\Delta_0$ would reach $\sim 10k_BT_c$ for the same gap function [22,23], which may be related to its proximity to a magnetic instability of the present compound. In fact, a recent study found a reduced Δ_0 in Ce_{0.99}Cu_{2.02}Si_{2.} [25], which is believed to be located closer to QCP than a stochiometric compound [26]. Applying external pressure increases Δ_0 [25]. In CeIrIn₅, applying pressure increases T_c [7]. Further investigations by NQR under pressure are in progress in order to reveal how the gap amplitude evolves with pressure, and the intimate relation between the superconductivity and the magnetic excitations.

0.40 K is remarkable. Namely, $1/T_1$ shows no coherence peak just below T_c , and decreases in proportion to $\sim T^3$ upon lowing T. This behavior is not compat-

In summary, we find from NQR $1/T_1$ measurement that the new HF compound CeIrIn₅ is much more itinerant than known Ce-based HFs. We further find that $1/T_1T$, subtracting that for LaIrIn₅, follows a $(\frac{1}{T+\theta})^{3/4}$ variation with a small $\theta=8$ K, and interpret it as arising from anisotropic, due to the layered crystal structure, spin fluctuations near a magnetic ordering. Below $T_c=0.40$ K, $1/T_1$ decreases

in proportion to T^3 , which indicates unconventional superconductivity with an anisotropic energy gap. Our results show that the superconducting state of this new compound is reminiscent of those in known HF and high- T_c cuprate superconductors, but the normal-state magnetic excitation lies in between those for the quasi-2D high- T_c cuprates and the known 3D, more localized HFs. Therefore, the knowledge about this compound may also be useful for understanding the physics of both high- T_c cuprates and traditional HF superconductors.

We thank J. Sarrao, C. Petrovic, and J. D. Thompson for discussing with us their results on pure and Rh-substituted CeIrIn $_5$ prior to publication, T. Takeuchi, Y. Kawasaki, and K. Ishida for useful discussions, and partial support by a Grant-in-Aid for Scientific Research No. 10CE2004 from the Japanese Ministry of Education, Science, Sports and Culture.

- [1] F. Steglich et al., Phys. Rev. Lett. 43, 1892 (1979).
- [2] N. D. Mathur et al., Nature (London) 394, 39 (1998).
- [3] D. Jaccard et al., Phys. Lett. A 163, 475 (1992).
- [4] F.M. Grosche *et al.*, Physica (Amsterdam) **224B**, 50 (1996).
- [5] R. Movshovich et al., Phys. Rev. B 53, 8241 (1996).
- [6] H. Hegger et al., Phys. Rev. Lett. 84, 4986 (2000).
- [7] C. Petrovic et al., Europhys. Lett. **53**, 354 (2001).
- [8] Y. Haga et al., Phys. Rev. B 63, 060503(R) (2001).
- [9] Y. Kitaoka et al., J. Magn. Magn. Mater. 52, 341 (1985).
- [10] A. Abragam, *The Principles of Nuclear Magnetism* (Oxford University Press, London, 1961).
- [11] Y. Kohori *et al.*, Physica (Amsterdam) **259B–261B**, 103 (1999).
- [12] N. Curro et al., Phys. Rev. B 62, R6100 (2000).
- [13] D. E. MacLaughlin et al., Phys. Rev. B 4, 60 (1971).
- [14] P.G. Pagliuso et al., cond-mat/0101316.
- [15] T. Moriya and T. Takimoto, J. Phys. Soc. Jpn. 64, 960 (1995); A. Ishigaki and T. Moriya, *ibid*. 67, 3924 (1998).
- [16] G.-q. Zheng et al., Phys. Rev. Lett. 85, 405 (2000).
- [17] S. Ohsugi et al., J. Phys. Soc. Jpn. 63, 700 (1994).
- [18] M. Kyogaku et al., J. Phys. Soc. Jpn. 62, 4016 (1993).
- [19] C. Lacroix et al., Phys. Rev. B 54, 15178 (1996).
- [20] R. Ballou et al., Phys. Rev. Lett. 76, 2125 (1996).
- [21] G.-q. Zheng et al., Phys. Rev. B 59, 13 973 (1999).
- [22] D. E. MacLaughlin et al., Phys. Rev. Lett. 53, 1833 (1984).
- [23] Y. Kohori et al., J. Phys. Soc. Jpn. 57, 395 (1988).
- [24] For example, K. Asayama *et al.*, Physica (Amsterdam) **178C**, 281 (1991).
- [25] Y. Kawasaki et al., Physica (Amsterdam) 281B/282B, 14 (2000)
- [26] P. Gegenwart et al., Phys. Rev. Lett. 81, 1501 (1998).