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Fano Resonances as a Probe of Phase Coherence in Quantum Dots
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In the presence of direct trajectories connecting source and drain contacts, the conductance of a quan-
tum dot may exhibit resonances of the Fano type. Since Fano resonances result from the interference
of two transmission pathways, their line shape (as described by the Fano parameter q) is sensitive to
dephasing in the quantum dot. We show that under certain circumstances the dephasing time can be
extracted from a measurement of q for a single resonance. We also show that q fluctuates from level to
level, and we calculate its probability distribution for a chaotic quantum dot. Our results are relevant to
recent experiments by Göres et al. [Phys. Rev. B 62, 2188 (2000)].
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Perhaps one of the most fundamental issues in the field
of mesoscopic physics is that of phase coherence: Under
what conditions are electrons able to retain a well-defined
phase? This issue is of particular interest for quantum
dots in the Coulomb blockade regime, where the electrical
conductance is suppressed except for points of charge de-
generacy [1]. Despite the fact that interactions are strong
in these dots, the shape of the conductance peaks can be
well understood in terms of single-particle wave functions.
Unfortunately, a simple conductance measurement cannot
discriminate between coherent and incoherent (sequential)
tunneling, as both mechanisms give rise to line shapes of
the Breit-Wigner form [2]. Instead, to establish phase co-
herence, the quantum dot has to be embedded in an inter-
ferometer. This was first done by Yacoby et al. [3], who
included a quantum dot in one arm of an Aharonov-Bohm
ring (see also Ref. [4]).

Given this result, it is natural to question the extent to
which transport is phase coherent. This question could not
be fully addressed in Ref. [3], because dephasing in the
quantum dot and in the arms of the interferometer cannot
easily be separated. An extremely promising development
in this respect is found in a recent work by Göres et al. [5],
who observed resonances with a Fano line shape in the con-
ductance of Coulomb-blockaded dots [6], instead of the
usual Breit-Wigner form. Fano resonances are caused by
the interference of two transport pathways, a resonant and
a nonresonant one, and are thus sensitive to phase coher-
ence. In the dots of Ref. [5], the direct pathway is prob-
ably direct transmission through the dot, as schematically
depicted in Fig. 1. In this sense, the dot serves as its own
interferometer.

Fano resonances have a line shape of the form

G�´� � Gd
j2´ 1 qGj2

4´2 1 G2 , (1)

where G is the conductance, measured in units of 2e2�h,
´ is the energy, set by a gate voltage, G is the reso-
nance width, Gd is the nonresonant conductance, and q is
the (complex) “Fano parameter.” The resonance form (1)
arises from the interference of a “direct” nonresonant path
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with transmission amplitude td � eibd
p

Gd and a resonant
path with transmission amplitude tr�´� � zrG��2´ 1 iG�,
where G�´� � jtd 1 trj

2 and q � i 1 zre2ibd�
p

Gd. The
Fano line shape (1) is for temperatures T ø G, which is
appropriate for the experiments on very small quantum
dots of Refs. [3–5]. Examples of dots that could show
Fano resonances are shown in Fig. 1.

Through the complex Fano parameter q, Fano reso-
nances contain more information than Breit-Wigner reso-
nances. Moreover, as the direct and resonant paths are not
spatially separated, no source of decoherence other than
dephasing inside the quantum dot can affect the line shape.
In fact, as we show below, in the presence of time-reversal
symmetry (TRS) or for a dot of the form of Fig. 1b, where
the opening to the cavity contains at most one propagat-
ing channel, measurement of a single Fano resonance at
T ø G is sufficient to determine the dephasing time tf

in the quantum dot:

h̄
tf

� G�jqj2 1 1 2
p

�jqj2 1 1�2 2 4�Imq�2 � . (2)

In this Letter, we develop a detailed description of Fano
resonances in quantum dots. In addition to the effect of
dephasing, we consider mesoscopic fluctuations —the
Fano parameter q and the width G fluctuate from resonance
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FIG. 1. Schematic drawing of two quantum dot systems in
which Fano resonances are expected. (a) A dot similar to that
used in a recent experiment by Göres et al. [5], showing a possi-
ble direct path. (b) A system where the width of Fano resonances
can be tuned without altering the direct path.
© 2001 The American Physical Society
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to resonance. We calculate the probability distribution of q
for a set of consecutive resonances in a chaotic quantum
dot using random matrix theory (RMT). We close with a
comparison of our results and the experiment of Ref. [5].
Several previous studies have treated Fano resonances in
quasi-one-dimensional systems rather than quantum dots
[7] and without mesoscopic fluctuations or dephasing.

Model.—We consider a quantum dot coupled to two
single-mode leads (1 and 2) via point contacts; see Fig. 1.
Transport through the system is characterized by the 2 3

2 scattering matrix S�´�, which we parametrize in terms
of a (unitary) scattering matrix S0�´� for processes that in-
volve ergodic exploration of the cavity, and a (nonunitary)
matrix S̄ that describes scattering via the direct, nonreso-
nant paths (both transmitting and reflecting) [8,9],

S � S̄ 1 t0
1

1 2 S0r 0
S0t . (3)

The auxiliary matrix t describes transmission from the
leads to an ergodic dot state, while t0 describes transmis-
sion from such a state back into the leads. Similarly, r 0

describes reflection of an electron leaving an ergodic dot
state back into the dot. Our results are independent of t0,
t, and r 0, as long as the 4 3 4 matrixµ

S̄ t0

t r 0

∂

is unitary. As the time scale of the direct processes is much
smaller than h̄�D, where D is the level spacing of the dot,
S̄ will be constant over an energy interval spanning a large
number of distinct resonances. Also, since TRS cannot be
broken on this short time scale, S̄ is symmetric. In contrast,
the scattering matrix S0, which describes scattering from
long, resonant paths, depends on energy and is only sym-
metric in the absence of a TRS breaking magnetic field.
We use the polar decomposition of S̄ [9],

S̄ � U
p

�1 2 T � UT, (4)

where U is a 2 3 2 unitary matrix and T � diag�T1, T2�.
Without loss of generality, we may choose t0 � tT �
U
p

T , r 0 � 2
p

1 2 T . The numbers 0 # T1 # T2 # 1
are known as “sticking probabilities” [10], i.e., the proba-
bilities for scattering through paths that explore the dot er-
godically, instead of direct transmission via a short path.
(The inequality T1 # T2 is made for definiteness.) The
standard theory of Fano resonances [6] (see also [7]) as-
sumes the existence of a single sticking probability only. In
our case, the existence of two sticking probabilities T1 and
T2 follows because the dot is coupled to two single-mode
leads. We assume T1, T2 ø 1, which ensures that the reso-
nances are narrow and well separated.

For S0, we make use of the formula [9]

S0�´� � �1 2 iK�´����1 1 iK�´�� , (5)

where K is a 2 3 2 matrix representing the Green func-
tion of the closed cavity at the contacts [11]. A reso-
nance occurs when K has a pole, i.e., when ´ coincides
with an energy level of the closed dot. Close to reso-
nance, K � DCCy��p´�, where the two-component
vector C � �C1, C2� represents the values of the wave
function at the leads. For convenience, we have set the
resonance energy to zero. Then S�´� takes the form

S�´� � U

µ
1 2

2iD
p

T CCy
p

T
4p´ 1 i2pG

∂
UT, (6)

where G � DCyTC�2p. By the Landauer formula,
S�´� determines the conductance G�´� � jS�´�12j

2, and
hence the Fano parameter q. Far from resonance, the
second term in Eq. (6) vanishes, so that the nonresonant
contribution to the conductance reads Gd � j�UUT�12j

2.
Several conclusions can be drawn directly from Eq. (6).

First, writing q � qx 1 iqy , unitarity of S implies that qx

and qy are bounded. Defining �qmax
x �2 � �qmax

y �2 2 1 �
1�Gd 2 1 and changing to “normalized” real and imagi-
nary parts of the Fano parameter q̃x � qx�qmax

x , q̃y �
qy�qmax

y , Eq. (6) gives the constraint

q̃2
x 1 q̃2

y # 1 . (7)

Second, in the presence of TRS, the wave function C can
be chosen real, from which one finds qy � 0. This implies
that, in the absence of dephasing, the conductance drops
to zero at ´ � 2qxG�2.

Resonance-to-resonance fluctuations.—We now con-
sider a set of consecutive resonances in a single quantum
dot, all occurring within an energy interval in which S̄ can
be considered constant. In general, the Fano parameter q
is sensitive to the resonance wave function C only through
the ratio T1C1�T2C2. If one of the sticking probabilities
is zero, so that the resonant state is coupled only to the
outside world via a single channel, this ratio is indepen-
dent of C, and q is set solely by the direct process. This
results in q being real and the same for each resonance:

q � qa � i�U11U21 2 U22U12���U11U21 1 U22U12� .
(8)

In quantum dots, this limit can be realized, for example,
in the geometry of Fig. 1b, if the opening to the cavity
supports only one mode at the Fermi level. However, in the
generic case (if the opening contains more than one mode,
or in the geometry of Fig. 1a), both sticking probabilities
T1 and T2 are nonzero. Then q depends on the wave
function of the resonance and should exhibit mesoscopic
fluctuations from resonance to resonance. In the case of
a chaotic quantum dot, we obtain the distribution of q
for our set of resonances by using RMT for the statistics
of the wave function C [12], keeping S̄ the same same
for all resonances (and hence U and T ). According to
RMT, the elements of C are independently distributed real
(complex) Gaussian random numbers with zero mean and
unit variance, in the presence (absence) of TRS. In terms
of the normalized real and imaginary parts q̃x and q̃y , and
with q̃a � qa�qmax

x , we find that in the presence of TRS
the distribution P is given by
4637



VOLUME 86, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 14 MAY 2001
P �
1
p

s
1 1 a

1 2 q̃2
x

1 1
a

2 �1 2 q̃xq̃a�

1 1 a�1 2 q̃xq̃a� 1
a2

4 �q̃x 2 q̃a�2
d�q̃y� , (9a)

while in the absence of TRS

P �
1 1 a

2p
q

1 2 q̃2
x 2 q̃2

y

�1 1
a

2 �1 2 q̃xq̃a��2 1
a2

4 �1 2 q̃2
x 2 q̃2

y� �1 2 q̃2
a�

�1 1
a2

4 ��q̃x 2 q̃a�2 1 q̃2
y 2 q̃2

yq̃2
a� 1 a�1 2 q̃xq̃a��2

. (9b)
Here a � T2�T1 2 1 $ 0. (We have averaged over the
resonance width G, which is also a random variable [13].)
In case of symmetric couplings (T1 � T2), the distribu-
tion simplifies to P�q̃x� � p21�1 2 q̃2

x�21�2 [P�q̃x , q̃y� �
�2p�21�1 2 q̃2

x 2 q̃2
y�21�2] with [without] TRS. In the ex-

treme asymmetric regime a ¿ 1, Eq. (9) tends to a delta
function distribution at q � qa; cf. Eq. (8). Note however
that for large but finite a, the distribution still has an ap-
preciable width (see Fig. 2).

Dephasing.—The effects of dephasing are treated phe-
nomenologically by attaching a fictitious voltage probe to
the dot [2,14]. This approach is not limited to a particular
microscopic mechanism and can describe dephasing from
both intrinsic sources (i.e., from electron-electron interac-
tions) and extrinsic sources (e.g., radiation, magnetic im-
purities). However, similar to a golden rule calculation
[15], it does not account for possible interaction effects
beyond lifetime broadening which occur at low tempera-
tures [16]. In practice, we first replace ´ ! ´ 1 ih̄�2tf

in Eq. (6), where tf is the phenomenological dephasing
time. The imaginary part of ´ models escape through the
fictitious voltage probe. A correction term is then added
to the conductance formula to account for the incoherent
injection of electrons from the voltage probe [2,14],

G�´� � jS12j
2 1

�1 2 �SSy�11� �1 2 �SSy�22�
2 2 �SSy�11 2 �SSy�22

. (10)

The second term corresponds to incoherent transmission
through the dot and has a Breit-Wigner line shape. As
a result, the imaginary part qy of the Fano parameter is
increased. Inclusion of dephasing also changes the reso-
nance width G to G 1 h̄��2tf�. Writing the ratio of
resonance widths without and with dephasing as xf �
G��G 1 h̄��2tf��, we find that the change of the Fano
parameters upon inclusion of dephasing is given by

qx ! xfqx , (11a)

�qy�2 ! 1 2 xf 1 xf�q2
x 1 q2

y 2 xfq2
x� . (11b)

In the presence of TRS, or in the extreme asymmetric limit,
where only one sticking probability is nonzero, qy � 0
in the absence of dephasing. Hence, measurement of a
nonzero qy in those cases can be used to determine tf

[17]. Calculating tf from Eq. (11) with qy � 0 in the
absence of dephasing yields the relationship (2). If TRS
is broken and if both sticking probabilities are finite, qy is
already nonzero in the absence of dephasing, and it cannot
be used to find tf. Note that as tf ! 0, G�´� ! GD ,
consistent with earlier work on resonant tunneling [18].

Role of Coulomb interactions.—So far we have not ad-
dressed the issue of Coulomb interactions, which are cer-
4638
tainly present and important for small quantum dots. In
this respect, we note that the time needed to traverse the
quantum dot via a direct trajectory is of the same order
or smaller than the inverse charging energy Ec. Hence,
by the time-energy uncertainty principle, transmission via
direct paths is not forbidden by Coulomb blockade. In
fact, as was shown by Matveev and co-workers [19,20],
Coulomb interactions actually enhance the probability of
direct processes —both direct reflection and direct trans-
mission [21]— at the cost of ergodic scattering. Hence,
by virtue of Coulomb interactions, the dot is driven to
the weak coupling regime T1, T2 ø 1. Such an interac-
tion-induced renormalization of the coupling between the
dot and its environment may explain why in the experi-
ment of Ref. [5] sharp resonances were observed, despite
the presence of diffraction at the point contacts. To apply
our theory to this situation, it is necessary to assume that
the renormalization of the scattering parameters for direct
processes has already taken place. We also implicitly as-
sumed that interactions play no further role in modifying
the resonances and that a single-particle approach is thus
valid close to resonance; see Refs. [22,23].

Two interesting observations of the experiment [5] can
be interpreted with the results of this Letter. First, in
Ref. [5], it was seen that application of a magnetic field
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FIG. 2. Distribution of qx in the presence of TRS for T2 � T1
(solid line) and T2 � 100T1 (dashed line). Inset: Two Fano
resonances with the same qx , but where qy is greater for the
dashed curve compared to the solid curve. (Breaking TRS causes
qy to increase on average, leading to more Breit-Wigner-like line
shapes.)
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tended to make resonances more Breit-Wigner-like. Our
calculation indicates that, for the generic case when both
sticking probabilities are nonzero, breaking of TRS gener-
ically leads to an increase of qy and thus to more Breit-
Wigner-like resonances; cf. Eq. (9b) (in the absence of
dephasing qy was zero without a magnetic field). This
is illustrated in the inset in Fig. 2 (compare against Fig. 6
of Ref. [5]).

Another observation in Ref. [5] was that, as a function
of the gate voltage that controls the transparencies of the
point contacts, the width of the observed resonances was
nonmonotonic. The conductance peaks started as narrow
Breit-Wigner resonances when the dot was pinched off
(Gd � 0), then widened as the contacts were opened into
resonances exhibiting the Kondo effect. As the contacts
were opened farther, the resonances became more nar-
row and had the Fano form with background conductance
Gd � e2�h. One possible explanation is that diffraction
at the contacts to the dot is strongest at intermediate point
contact transparencies, leading to large sticking proba-
bilities. (A schematic of the dot of Ref. [5] is shown in
Fig. 1a.) To test such a scenario, we have performed nu-
merical simulations of the system shown in Fig. 1b, using
a recursive Greens function algorithm [24]. As expected,
we find conductance resonances with a Fano line shape;
see Fig. 3. In order to simulate how the nonmonotonic
resonance width in the experiment might happen, we have
placed an impurity near the opening of the dot and varied
its scattering strength V (V is the potential of the impu-
rity sites in the simulation). Resonances for two values
of V are shown in Fig. 3; the resonance width G does in-
deed exhibit a nonmonotonic dependence on V . Initially
increasing V from zero has the effect of deflecting more
electrons into the dot and hence increasing G; larger val-
ues of V , however, cause electrons to backscatter away
from the dot altogether, thus reducing G and suppressing
the background conductance Gd.
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FIG. 3. Numerical simulation of conductance vs voltage show-
ing Fano resonances for a quantum dot with direct transmission
(right). The thin line corresponds to the background conductance
(i.e., when the dot is closed off). The three plots correspond to
the same resonances for an increasing value of the scattering
strength of an impurity near the contact.
Conclusion.—Fano resonances provide a powerful tool
for the study of phase coherence in transmission through
quantum dots. We have shown that in certain cases, mea-
surement of a single resonance already allows for the de-
termination of tf. We have also calculated the distribution
of Fano parameters for a chaotic quantum dot.
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