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Dynamical Mean-Field Theory for Pairing and Spin Gap in the Attractive Hubbard Model

M. Keller,1 W. Metzner,1 and U. Schollwöck2

1Theoretische Physik C, Technische Hochschule Aachen, D-52056 Aachen, Germany
2Sektion Physik, Universität München, D-80333 München, Germany

(Received 21 December 2000)

We solve the attractive Hubbard model for arbitrary interaction strengths within dynamical mean-field
theory. We compute the transition temperature for superconductivity and analyze electron pairing in the
normal phase. The normal state is a Fermi liquid at weak coupling and a non-Fermi-liquid state with a
spin gap at strong coupling. Away from half filling, the quasiparticle weight vanishes discontinuously at
the transition between the two normal states.
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Fermi systems with a weak attractive interaction are
Fermi liquids which undergo a phase transition into a su-
perconducting state via the condensation of weakly bound
Cooper pairs at a low critical temperature Tc. For a
long time this weak coupling route to superconductivity,
which is well described by the BCS mean-field theory [1],
was distinguished almost dogmatically from Bose-Einstein
condensation of bosons, until Leggett [2] showed that BCS
superconductivity transforms smoothly into Bose-Einstein
condensation of tightly bound pairs when the two-particle
attraction between the fermions is increased gradually from
weak to strong coupling. The size of the Cooper pairs
shrinks continuously until spatially well separated bosons
form, which undergo Bose condensation at a sufficiently
low temperature. Nozières and Schmitt-Rink [3] have ex-
tended Leggett’s analysis to lattice electrons and finite
temperatures. Based on physical insight gained from a dis-
cussion of the weak and strong coupling limits and an ap-
proximate (T -matrix) treatment of the intermediate regime
they concluded that the evolution from weak coupling to
strong coupling superconductivity is indeed smooth.

The interest in the intermediate regime between the BCS
and Bose-Einstein limits increased considerably after the
discovery of high-temperature superconductors, which are
characterized by Cooper pairs whose size is only slightly
bigger than the average electron distance [4]. Much recent
work has therefore been dedicated to the theory of Fermi
systems with attractive interactions of arbitrary strength
[5]. It was shown that sufficiently strong attraction or
reduced dimensionality can lead to energy gaps even in
the normal phase, which have been related to pseudogap
phenomena in the cuprate superconductors [6].

In this work we analyze the formation of pairs in a Fermi
system with arbitrary attractive interactions by solving the
attractive Hubbard model within dynamical mean-field the-
ory (DMFT) [7]. We show that the normal state is a Fermi
liquid at weak coupling and a non-Fermi liquid state char-
acterized by bound pairs and a spin gap at strong cou-
pling, in qualitative agreement with Quantum Monte Carlo
(QMC) studies of the two- and three-dimensional attrac-
tive Hubbard model [8–10]. At very low temperatures the
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transition between the Fermi liquid and the normal paired
state is discontinuous.

In standard notation the Hubbard model for lattice fer-
mions with a nearest neighbor hopping amplitude 2t and
a local interaction U is given by

H � 2t
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The attractive (U , 0) Hubbard model is a superconductor
below a certain critical temperature Tc�U, n� . 0 for all
U at any average density n, if the lattice dimensionality
is above two [11]. At half filling (n � 1) the usual U(1)
gauge symmetry becomes a subgroup of a larger SO(3)
symmetry, and the superconducting order parameter mixes
with charge density order. In two dimensions one expects
a Kosterlitz-Thouless phase at low temperatures for all
U , 0 and n fi 1 [11].

In the weak coupling limit U ! 0 and dimensions d .

2 the attractive Hubbard model can be treated by BCS
mean-field theory [3,11]. In the strong coupling limit U !
2` the low energy sector of the model (excitation energies
øjUj) can be mapped onto an effective model of hard-core
lattice bosons with a hopping amplitude of order t2�U
and a repulsive nearest neighbor interaction of the same
order [3,11]. These bosons undergo Bose condensation in
d . 2 dimensions and a Kosterlitz-Thouless transition in
two dimensions (for n fi 1) at a critical temperature of
order t2�jUj.

For nearest neighbor hopping on a bipartite lattice the
particle-hole transformation of spin-" fermions

cj" � hjc
y
j", c

y
j" � hjcj" , (2)

where hj � 1 �21� for j on the A sublattice (B sublattice),
maps the attractive Hubbard model at density n onto a
repulsive Hubbard model at half filling with a finite average
magnetization m � 1 2 n [11]. We will use this relation
to compare with results known for the repulsive Hubbard
model.

We have solved the attractive Hubbard model within
DMFT [7]. In contrast to other (simpler) mean-field
© 2001 The American Physical Society
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approaches, DMFT provides an exact solution of the
model in the limit of infinite lattice dimensionality [12],
since it captures local fluctuations exactly.

To convince ourselves that DMFT is a suitable approach
for the weak to strong coupling crossover problem, let us
first consider the limits. At weak coupling DMFT captures
the complete BCS physics, since it contains the Feynman
diagrams contributing to the BCS mean-field theory. At
strong coupling, where the attractive Hubbard model maps
to the hard-core Bose gas, DMFT reduces to the standard
mean-field theory of the hard-core Bose gas [13]. Hence,
Bose-Einstein condensation of preformed pairs is obtained
at a critical temperature of order t2�jUj at large jUj.

Within DMFT the fluctuating environment of any lattice
site is replaced by a local but dynamical effective field G0
[7]. The mean-field equations involve the calculation of
the propagator G�t� � 2�T cs�t�cy

s�0�� of an effective
single-site Hubbard model coupled to the dynamical field
G0, and a self-consistency condition relating G to the local
propagator of the full lattice system. The lattice structure
enters only via the bare density of states (DOS), as long as
the translation invariance of the lattice is not broken. We
have used the particularly simple self-consistency equa-
tions [7]

G21
0 �iv� � iv 1 m 2 �e0�2�2G�iv� , (3)

valid for a half-ellipse shaped density of states D0�e� �
2

pe
2
0

p
e2

0 2 e2. Any other bounded DOS would yield quali-
tatively similar results. In the following we will set e0�2 �
1. Susceptibilities such as the pairing and the spin suscep-
tibility can also be computed from expectation values of
operator products within the effective single-site problem.
The DMFT equations can also be extended to supercon-
ducting or other symmetry broken phases [7]. In this work
we focus, however, on normal state properties.

The effective single-site problem cannot be solved ana-
lytically. We have solved it numerically by discretizing the
imaginary time interval and computing expectation values
via the standard Hirsch-Fye algorithm [14].

We now present and discuss results from our DMFT
calculation at quarter filling (n � 1�2). We do not expect
that the results depend qualitatively on the density in the
attractive Hubbard model, as long as n is finite. Only the
particle-hole symmetric case n � 1 is special due to its
larger symmetry group. Quarter filling is well below half
filling but still high enough to see collective many-body
effects, which are not obtained in the low-density limit.

The critical temperature Tc for the onset of superconduc-
tivity shown in Fig. 1 has been obtained from the pairing
susceptibility in the normal phase, which diverges as the
temperature approaches Tc from above. The critical tem-
perature at half filling, where the superconducting state is
degenerate with a charge-density wave state, has been com-
puted within DMFT already earlier [15]. Note that corre-
lations suppress Tc with respect to the BCS result even
in the weak coupling limit, as expected [16]. At strong
FIG. 1. Critical temperature Tc as a function of the coupling
strength jUj at quarter filling within DMFT, compared to Tc
obtained from BCS theory and from the T-matrix approximation
(TMA), respectively.

coupling Tc�U� approaches the 1�U behavior described
by the hard-core Bose gas limit. At intermediate coupling
strengths, Tc�U� varies smoothly, as predicted already by
Nozières and Schmitt-Rink [3]. A comparison with a re-
cent result for Tc obtained by combining the DMFT with a
self-consistent T -matrix approximation (TMA) [17] shows
that the latter approximation reproduces the correct quali-
tative behavior of Tc�U�, but fails quantitatively.

In the following, we discuss the weak to strong coupling
crossover in the normal phase. We ignore the supercon-
ducting instability and study normal state solutions of the
DMFT equations also below Tc. Of course these solutions
do not minimize the free energy, but they could be stabi-
lized by the field energy of a sufficiently strong external
magnetic field.

At weak coupling the normal state of the system is
a Fermi liquid with fermionic quasiparticle excitations.
Besides numerical evidence this follows [18] from the ana-
lyticity of weak coupling perturbation theory for the effec-
tive single-site problem. By contrast, at sufficiently strong
coupling jUj ¿ e0 and zero temperature all particles are
bound in pairs, because a small kinetic energy cannot over-
come a finite binding energy. Only short-ranged virtual
breaking of local pairs occurs. At low finite temperatures
T ø jUj only an exponentially small fraction of pairs
dissociates.

A good measure for local pair formation is the density
of doubly occupied sites nd � �nj"nj#�. For an uncorre-
lated state the density of doubly occupied sites is simply
the product of the average density of up and down spin par-
ticles, i.e., n0

d � n"n# � �n�2�2. An attractive interaction
enhances nd . In the limit of infinite attraction all particles
are bound as local pairs such that nd ! n�2. In Fig. 2
we show results for nd�T � for various U. Decreasing T
from the high-temperature limit nd�T � first increases as
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FIG. 2. Density of local pairs nd as a function of temperature
for various coupling strengths U at quarter filling.

a consequence of the attractive interaction. For small or
moderate U, however, nd�T � slightly decreases again at
low temperatures. This effect, which has also been ob-
tained in the combined DMFT 1 TMA calculation [17],
can be attributed to the kinetic energy, which tends to dis-
sociate pairs if the attraction is not too strong. Note that
in the pairing regime for stronger U the upturn in nd�T �
at low temperatures is missing. The kinetic energy is not
able to unbind pairs any more. A completely analogous
(particle-hole transformed) behavior has been found in the
DMFT solution of the repulsive Hubbard model at half fill-
ing [7].

The absence of fermionic quasiparticles in the pairing
state at strong coupling also leads to a pronounced spin
gap. In Fig. 3 we show our DMFT results for the tempera-
ture dependence of the spin susceptibility xs, for various
coupling strengths. For a weak attraction the spin suscep-

FIG. 3. Spin susceptibility xs as a function of temperature for
various coupling strengths U at quarter filling.
4614
tibility increases monotonously for lower temperatures and
then saturates at a finite value for T ! 0, as expected for a
Fermi liquid. For strong coupling, however, xs decreases
rapidly at low temperatures, as expected for a system where
spin excitations are gapped. This gap, which has also
been seen in QMC simulations of the two-dimensional
[8,9] and three-dimensional [10] Hubbard model, is clearly
due to the binding energy of pairs in the non-Fermi liquid
state forming at strong coupling. For an intermediate at-
traction strength, pseudogap behavior seems to set in at
intermediate temperatures, but for small T the suscepti-
bility increases again and tends to a nonzero value (see
U � 24). We expect that this behavior reflects the pres-
ence of a narrow quasiparticle band in the system, equiva-
lent to the one known for the repulsive model near the Mott
transition [7]. The self-consistent TMA fails to yield spin
gap behavior in high dimensions [17], and yields only a
rather weak suppression of xs in two dimensions [19].

Since the Fermi liquid state at weak coupling is quali-
tatively different from the bound pair state at strong
coupling, there must be a sharply defined pairing transi-
tion at some critical attraction Uc at least in the ground
state. At quarter filling we can estimate from our data
Uc � 22.5e0.

To see how the Fermi liquid breaks down upon increas-
ing the attraction strength, we have computed the renor-
malization factor Z�T � � �1 2 S�iv0��iv0�21, where S

is the self-energy and v0 � pT the smallest (positive)
Matsubara frequency at temperature T . In Fig. 4 we
plot Z�T� as a function of T for various U at quarter
filling (left) and at half filling (right). At quarter filling
Z�T� extrapolates to a finite positive value Z in the limit
T ! 0, for any U. In the Fermi liquid phase Z has
physical meaning, being the spectral weight for quasi-
particles, the Fermi edge discontinuity in the momentum
distribution function and, within DMFT, also the inverse
mass renormalization. This meaning is of course lost in
the bound pair state. Note that the finiteness of Z for
all U does not imply that the system is a Fermi liquid
for arbitrary interactions. A simple calculation shows
that Z is finite even in the atomic limit t � 0, where the

FIG. 4. Z�T� as a function of temperature for various U at
quarter filling (left) and half filling (right).
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system is obviously not a Fermi liquid. An exception
is the half-filled case, where Z ! 0 for U ! Uc, and
Z � 0 for all jUj $ jUcj (see Fig. 4) and in the atomic
limit. For half filling the continuous vanishing of Z has
been analyzed in much detail for the Mott transition in the
repulsive Hubbard model [7], which is equivalent to the
pairing transition in the attractive model by virtue of
the particle-hole transformation (2). We thus conclude
that the Fermi liquid phase disappears with a finite Z
at electron densities n fi 1, i.e., the quasiparticle weight
disappears discontinuously at the pairing transition.

It is instructive to consider the low density limit n ! 0
for comparison. In that limit the bound pair state is stable
once the attraction exceeds the threshold for two-particle
binding U0

c . For jUj , jU0
c j no bound states exist, and the

particles move essentially freely, due to the low density,
and Z is almost one even close to the transition.

Using the Hirsch-Fye algorithm it is hard to determine
unambiguously whether there is a sharp phase transition
at some critical Uc�T � also at sufficiently low finite tem-
perature or only a smooth (though steep) crossover, since
the computation time increases rapidly at low tempera-
tures. However, one can find an answer to this question
by exploiting the equivalence of the attractive Hubbard
model at generic densities and the half-filled repulsive
Hubbard model with a finite magnetization. The latter
model has been analyzed earlier within DMFT by Laloux
et al. [20], who solved the DMFT equations with an exact
diagonalization algorithm which is more efficient than the
Hirsch-Fye algorithm at low temperatures. The results of
their work imply that at very low temperatures a first order
transition occurs in the attractive Hubbard model between
a thermally excited Fermi liquid state and a thermally ex-
cited bound pair state.

In summary, we have shown that DMFT yields a transi-
tion from a Fermi liquid state at weak coupling to a non-
Fermi liquid state with a spin gap at strong coupling in the
attractive Hubbard model. Spin-gap behavior for strong
attraction is obviously governed by short-range pair corre-
lations which are captured by DMFT. Long-range super-
conducting fluctuations characteristic for low-dimensional
systems are crucial for normal state gaps only at weaker
coupling.
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