
VOLUME 86, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 14 MAY 2001

4592
Nanoadhesion between Rough Surfaces
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A model is developed to describe the adhesion between deformable fractal surfaces over the meso-
scopic realm that covers the familiar range of interest in nanotechnology from atomic dimensions to
microns. This model helps us gain a quantitative understanding of the variation of adhesion with surface
energy, with microstructure of rough surfaces, and with bulk deformability. The present analysis goes
beyond the Gaussian distribution of asperity heights by investigating the influence of the microstructure
of self-affine fractal surfaces. Our calculation reveals that orders of magnitude increase in adhesion are
possible as the roughness exponent decreases.

DOI: 10.1103/PhysRevLett.86.4592 PACS numbers: 68.35.Gy, 05.40.–a, 68.35.Ct
Developing a sophisticated understanding of adhesion
between solid-solid interfaces will help modern technology
better design the processes of bonding or debonding that
are essential to many applications from adhesives, thin film
coating, image formation, to microelectronics. It has been
known for a long time that the surface roughness is very
important in the determination of the force that is required
to separate two materials after they had been brought into
contact. The experiment measurement of the debonding
forces between two atomically smooth mica surfaces re-
veals that the adhesion is comparable to the van der Waals
force [1], which defines the surface energy. For low-energy
solids such as polymers, the surface energy is usually de-
termined by the extrapolated contact angle measurement
and is expressed in terms of the critical surface energy to
characterize a solid surface [2].

Recent studies of wetting of nonplanar substrates have
shown that roughness enhances the critical surface energy
[3,4]. On the other hand, roughness reduces the adhesion
between elastic solids [5]. It becomes apparent that the sur-
face energy alone cannot account for the adhesion of con-
tacting solids. The roughness-induced real area of contact
and bulk deformation are going to influence the intensity
of adhesion. Indeed, a recent reported interplay between
the tackiness and surface roughness on the micron scale
concludes that roughness is tough on stickiness and soft
solids are sticky [6,7]. Air bubbles can be trapped inside
the surface roughness during the contact formation before
a pull-off force is applied. A typical value of the elastic
constant for soft materials is in the order of 106 dyn�cm2

[8,9], which may be enough to enhance the real area
of contact and deformation to achieve a sufficient level
of adhesion.

The present state of theoretical studies of roughness
related to adhesion has been limited to the analysis of
height fluctuation normal to surface, which is assumed to
be Gaussian [5,10]. In view of the crucial importance of
roughness on adhesion, we shall go beyond the Gaussian
surfaces by investigating the influence of the microstruc-
ture of rough surfaces. The use of the fractal concept in the
understanding of rough surfaces is increasingly important
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these days [11]. It is the purpose of this paper to develop
a model that describes the solid-solid adhesion between
deformable fractal surfaces over the mesoscopic realm.
That covers the familiar range of interests in nanotechnol-
ogy from atomic dimensions to microns [12]. The present
model can help us to gain a quantitative understanding of
the following issues. Why are soft solids stickier than hard
materials when the roughness is on the micron scale? What
is the general relationship between the roughness and the
rigidity of contacting materials during debonding? How
strong is the influence of the surface microstructure on the
failure of adhesion?

Adhesion is maintained between a few asperities by van
der Waals forces depending on the distribution of asperity
height f. When the maximum force that can be sustained
by adhesion before separation is F0, the relative adhesion
(or pull-off force) for rough surfaces in contact can be
written in the general form,

F�F0 � 2
Z `

2`
f�z 2 d, ´�f�z� dz

� 2
Z `

0
f

µÇ
z 2 d

´

Ç∂
c�z� dz . (1)

When f is a symmetrical function, it is often convenient
to analyze the problem by using the causal distribution
function c � 2f instead. In Eq. (1), ´ is the maximum
extension of the tip of an asperity above its undeformed
height before separation occurs, and d is the separation of
two reference planes of contacting rough surfaces, and it is
smaller than the asperity heights. The force of separation
under tension immediately after the contact formation un-
der compression is going to be determined by Eq. (1). It
has been mentioned in the literature that neither the asper-
ity shape nor the force-displacement relationship f for an
individual asperity is generally known. Based on the gen-
eral description of the microstructure of self-affine fractal
surfaces, we plan to present analytical expressions (i) of
the asperity shape, (ii) of the nonlinear force-displacement
relationship f, and (iii) of the non-Gaussian height proba-
bility function c . That is beyond the Gaussian distribution
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assumption adopted frequently in the literature. Our objec-
tive is to obtain a quantitative understanding of the varia-
tion of adhesion with surface energy, with microstructure
of rough surfaces, and with bulk deformability.

The height of a continuous rough surface from its
smooth reference is represented by the function h��r�,
where �r is the position vector on the reference surface. It
is usual to ensure that �h� � 0, where the angular bracket
denotes the average across the surface. Three independent
parameters are needed to describe the microstructure of
a self-affine fractal surface. The standard deviation s is
the root mean square fluctuation normal to the surface and
the correlation length j parallel to the surface. In addition
to the length scales, the third independent parameter is
the roughness exponent a, which defines the scaling
properties of the surface and is equal to a �

1
2 for the

Gaussian surfaces. For a given domain size of short-range
surface profile, smaller a corresponds to rougher local
variation of a surface, and smoother hills and valleys are
expected as a ! 1 [13].

In terms of the microstructure of a self-affine fractal
surface, the change of the height correlation function with
distance r has been derived to be [14]

��h��r0 1 �r� 2 h��r0��2� � s2�1 2 exp�2�r�j�2a�	

 C�r�j�, 0 , a # 1 . (2)

This equation results in a familiar power law C � r2a for
r ø j, and an asymptotic value C � s2 for r ¿ j [11].
The shape of asperity peak can be described by

g�r�j� � 2
Z r�j

0

p
C�r 0� dr 0

�
2s
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µ
r
j

∂a11

1 . . . , r ø j . (3)

The presence of two in front of integration is due to the
symmetric surface with its the origin at the center of con-
tact. The radius of curvature of spherical asperity R is then
determined as

1
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d2g�dr2

�1 1 �dg�dr�2�3�2 dr

�
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j
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0

d2g
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j2 , (4)

where the spatial average is taken over the range of j

because the two heights become uncorrelated at a distance
of the order of j in accordance with Eq. (2). As one might
expect, R ! ` for a smooth surface when the standard
deviation s ! 0 or the correlation length j ! `.

Most of the literature on rough surfaces assumes that
the height distributions are Gaussian, which is too re-
strictive for many important applications. Following the
above-mentioned general description of fractal surfaces,
we obtain a non-Gaussian probability distribution of as-
perity heights to be
c�z� � c0 expb2a�z�s�1�a c, 0 , a # 1 , (5)

where

c0 �

∑
s

Z `

0
exp�2au1�a� du

∏21

�
1

sa12aG�a�
,

(6)

where G is the gamma function. When a �
1
2 , we get the

Gaussian distribution function from the above two equa-
tions. The exponential distribution is the case of a � 1.
The next step is to analyze to bulk deformability related to
a single contact. The displacement w at the tip of an asper-
ity relates to the radius of contact area a and the radius of
curvature R by w � a2�R. Including the effect of surface
energy g in the analysis of Hertz for contact deformation
[15] and using Eq. (19) in [16], we obtain

w � �F 1 2F0 1 2
q

F0F 1 F2
0 �2�3R21�3�4E0�3�22�3,

(7)

where F0 � �3�2�pgR. More precisely, g � g1 1

g2 2 g12 is the work of adhesion where g1, g2, and g12
are the surface energies of the surface 1, the surface 2,
and the interface, respectively. From Eq. (4), the effective
radius of curvature of two surfaces in contact is related to
their roughness parameters by
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and the effective elastic constant E0 by
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2
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. (9)

Clearly, soft materials dominate the contact deformation
when they are in contact with hard materials, and rougher
surfaces dominate the contribution to the curvature.

Introducing f � F�F0, ´ � �3F0�4E0�2�3R21�3 . 0,
Eq. (7) leads to the nonlinear force-displacement relation
of a single asperity contact:

f � �w�´�3�2 2 2�w�´�3�4. (10)

This expression is the new form of Eq. (19) in [16] with our
notations. The first term on the right-hand side of Eq. (10)
is due to the bulk contribution related to the elastic contact,
and the second term is due to the surface contribution
related to the surface energy. When the displacement in
Eq. (10) is chosen to be w � z 2 d and the height proba-
bility density is assumed to be a delta function, Eq. (1)
becomes

F�F0 � 2f

µÇ
2

d
´

Ç∂
) d � ´ , (11)

by looking at Fig. 1. This figure also suggests that f � 21
for w�´ , 1, which is consistent with experimental data
of a rubber sphere in dry contact with a rubber flat [16].

Combining Eqs. (1), (5), (10), and (11), we finally
obtain
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FIG. 1. Nonlinear force-displacement relationship for the con-
tact deformation of a single spherical asperity that includes the
effect of surface energy.

F
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� 2
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f�jbs 2 1j� exp�2as1�a� ds ,

(12)

where the nondimensional parameter,
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� 2
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4E0s2
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µ
E0s2
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, (13)

and the normalized force-displacement relationship,

f�jbs 2 1j� � 21, for 0 # jbs 2 1j , 1

� jbs 2 1j3�2 2 2jbs 2 1j3�4,

for jbs 2 1j $ 1 . (14)

Equations (12)–(14) are the sought-after equations
for quantitative predictions of the adhesion between de-
formable fractal surfaces. Equation (13) can be related to
the Fuller-Tabor (FT) parameter, given by Eq. (17) in [5],
which, however, does not contain the roughness amplitude
s and correlation length j in its original form. When the
radius of curvature of spherical asperity in the FT parame-
ter is replaced by that of Eq. (4), a nondimensional pa-
rameter �E0s2�gj� is obtained which links directly to b.

For simplicity, one of the surfaces is assumed to
be rigid and flat in seeking the numerical solutions of
Eqs. (12)–(14). The strong effect of the microstructure
of rough surfaces on the relative adhesion is shown in
Fig. 2. All curves in this figure collapse at F � F0, for
b below unity was interpreted by FT [5] as the fact that
the indentation is of the order of the roughness amplitude
s, and it was further interpreted [17] in terms of the
fraction of the surface area that is truly in contact: The
fraction goes to unity when the parameter b is below
unity. Considering E0s2�gj � 10, we see an order
of magnitude increase in the adhesion as the roughness
exponent a decreases from 0.7 to 0.3, which is known
4594
FIG. 2. The strong influence of the roughness exponent a,
amplitude s, and correlation length j on the relative adhesion
is calculated from Eqs. (12). The surface energy and elastic
constant are scaled with the roughness amplitude and correlation
length in accordance with Eq. (13).

for thin films deposited on substrates [11,13]. Our result
compares well with that of Johnson in the case of an
exponential distribution of asperity heights (see Fig. 6 in
[5]), but differs somewhat from that of FT in the case
of a Gaussian distribution. Because dF�db ! 0 in the
vicinity of F � 0, the FT equation cannot provide a
solution for the quantitative prediction of adhesion failure
to be discussed later. The new features of this Letter
are (i) Eq. (5) and its application to Eq. (10) that lead to
Eq. (12), and (ii) Fig. 2 that predicts the resulting effects
of a with b to be important.

Figure 3 shows that the relevant standard deviation of
asperity heights for hard materials such as mica with E0 �
1010 to 1011 dyn�cm2 has to be in the order of nanome-
ter, s � 1 nm. Soft solids such as rubber have the effec-
tive elastic modulus E0 � 106 to 107 dyn�cm2. Figure 3
also reveals that the pertinent length scale should be in
the order of micron, s � 1mm, that compares well with
what has been reported [5–8]. The suction-cup effect in-
duced by air bubble trapping [6] may attribute in part to
the reduction in the effective elastic constant [18] and in
the roughness exponent. The profile of a bubble-trapping
rough surface looks quite like that of a fractal surface with
a � 0.3 shown in Fig. 8.1 in [12]. In addition, this par-
ticular problem may also involve disconnected rupture of
bubbles, which is beyond the scope of this Letter.

Both Figs. 2 and 3 have clearly illustrated the strong
and sensitive relationships between the relative adhesion,
surface roughness, and material rigidity. Equations (7) and
(8) give

F0 �
3pgs

4

µ
j

s

∂2

. (15)

For given g, a, and s�j, we obtain the ratio of the
maximum adhesion forces between soft and hard solids,
F�soft��F�hard� � 103, from Fig. 3, and Eqs. (12) and
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FIG. 3. Relative adhesion is predicted as a function of the
elastic constant with different roughness exponent a and ratio of
surface fluctuations s�j. The abscissa is shifted by 3 orders of
magnitude as the standard deviation s of asperity height changes
from a micron to a nanometer. These curves correspond to either
s � 1 mm and E0 in 107 dyn�cm2 or vice versa.

(15) in the case of b ø 1. Under such restrictive condi-
tions, the maximum pull-off forces for soft solids are found
to be 3 orders of magnitude higher than the weak van der
Waals forces for smoother hard materials [1]. The crite-
rion for adhesion failure is obtained by choosing F � 0
on the left-hand side of Eq. (12). The strong influence
of the surface microstructure on the relationships between
the roughness and rigidity of contacting solids during the
adhesion failure is shown in Fig. 4 by solving Eq. (12).
In order to maintain good adhesion between hard materi-
als, the length scales of the roughness parameters s and j

have to approach atomic dimensions. Of course, the pre-
cise value of adhesion may vary over orders of magni-
tude and is controlled by the above-mentioned surface and
bulk properties.

In summary, an integral equation has been derived
to predict the strength of adhesion as a function of the
surface energy �g�, the microstructure �a, s, j� of fractal
surfaces, and the effective elastic constant �E0� over the
mesoscopic realm. Based on the general description of the
microstructure of self-affine fractal surfaces, we obtain
the analytical expressions of the asperity shape, of the
nonlinear force-displacement relation, and of the non-
Gaussian height probability function. All these relations
are then integrated into Eq. (12). Its solution reveals that
orders of magnitude increase in adhesion are possible
as the roughness exponent decreases. A relationship
between the critical roughness and material rigidity is
also obtained that describes the detachment of contacting
surfaces: the roughness length scales reduce from microns
to nanometers when materials are changed from soft to
hard. The adhesion of soft solids can be several orders of
magnitude higher than the van der Waals forces in some
cases, and a small variation of roughness in the nanometer
FIG. 4. Dependence of adhesion failure on roughness over the
entire mesoscopic scales from microns to atomic dimensions
when materials are changed from soft to hard. The relationship
between the critical roughness and elastic constant during de-
tachment is predicted as a function of the structure parameters
of rough surfaces for a given surface energy.

scale is sufficient to result in the adhesion failure for
hard materials.
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