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We have investigated the amplification of a spatially periodic perturbation applied to a wide funda-
mental beam launched near phase matching for second-harmonic generation in a lithium niobate film
waveguide. We measured the gain coefficient for the modulational instability of quadratic eigenmodes
as a function of periodicity, intensity, and wave-vector mismatch. Excellent agreement with theory
was obtained.
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When the response of a medium to wave motion is non-
linear, stationary solutions to the corresponding nonlinear
wave equation are the nonlinear eigenmodes with specific
relations between their intensity, their propagation con-
stant, and the properties of the medium. If perturbations
occur in any of these parameters, certain eigenmodes
become unstable leading to breakup of the wave, known
as modulational instability (MI) [1]. Temporal and
spatial perturbations of unstable eigenmodes with infinite
extent in time (cw eigenmodes) or space (plane wave
eigenmodes) lead to temporal and spatial MI, respectively,
usually triggered by noise on the wave input into the
medium. The Fourier components of the noise over a
limited and well-defined range of temporal or spatial
frequencies grow exponentially with time or propagation
distance. The corresponding gain coefficient varies with
the frequency and local intensity, and the frequency with
the maximum gain coefficient ultimately determines the
periodicity of the wave breakup, leading to periodic
structures on the output wave.

MI has been observed in many nonlinear systems, for
example, in waves in plasmas, electrical circuits, mechan-
ics, fluids, and optics [2,3]. In the optical domain, MI has
proven very important because the instability experienced
by optical beams and pulses in nonlinear media places an
upper limit on the intensity of waves that can propagate un-
changed and be used effectively in nonlinear interactions.
In fact, one of the first optical nonlinear effects observed
was spatial MI, the breakup of broad, high intensity beams
into filaments in Kerr media due to spatial noise present
on the beam [4]. During the past few decades, a number
of experiments with optical waves have been reported in
Kerr, photorefractive, and quadratic bulk media in which
noise generated spatial MI patterns have been observed
[5–7]. The theoretical understanding of MI is well
developed. Expressions have been derived for the gain
coefficient-periodicity-intensity relation in waveguides
[one-dimensional (1D) case] in media with Kerr, photore-
fractive, and quadratic nonlinearities [8–10]. The analysis
is more complex in bulk media in the 2D case where exact
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analytical expressions are not available [11]. Until this
year, the only optical examples of MI in a 1D geometry
had been in the temporal domain in optical fibers [3];
until recently 1D MI due to quadratic nonlinearities has
been observed also in space domain in slab waveguides
[12]. MI patterns generated from seeded perturbations
have been predicted, observed in the temporal domain,
and shown to develop after further propagation into a train
of temporal solitons which are the stable eigenmodes of
the system [13–15].

Although the beam breakup due to noise has been ob-
served frequently, there are only a few measurements
of the gain coefficients themselves for direct compari-
son with theory. This requires a controlled seeding of
the beam with a periodic modulation and measurement
of the growth of the seed before saturation and soliton
formation sets in. For example, temporal modulation of
surface plasma waves has been investigated but the in-
terpretation was hampered by the multiplicity of non-
linear mechanisms present [16]. To the best of our
knowledge, the relation between periodicity, gain, and
intensity has not been explored experimentally and com-
pared successfully with theory, even for the simplest 1D
case where analytical theories exist. We have chosen
to investigate the gain coefficients of spatial MI in a
1D medium with a quadratic nonlinearity. This is an
especially rich system because, near the condition for
phase-matched second-harmonic generation (SHG), the
eigenmodes consist of coupled fundamental (FD) and
second-harmonic (SH) waves and, hence, the gain coef-
ficient depends on yet another variable, the phase mis-
match DbL. Db � 2bFD 2 bSH is the wave-vector
mismatch, and L is the sample length. In this work,
we seeded a periodic perturbation on a broad beam in-
jected into a lithium niobate �LiNbO3� slab waveguide
near its phase-matching condition for SHG. The growth
of the perturbation was measured at the waveguide out-
put, yielding what we believe to be the first quantitative
measurement of the MI growth rate or gain coefficient
for comparison with theory.
© 2001 The American Physical Society
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The MI analysis in 1D is based on the periodic perturba-
tion of the appropriate “plane wave” nonlinear eigenmodes
of a film waveguide. For quadratically nonlinear media,
they consist of both a FD and SH wave, both extended in-
finitely wide in the transverse direction parallel to the film.
The fields are locked in phase (“P-branch” eigenmode)
or out of phase (“N-branch”) with one another so that
there is no net energy exchange between FD and SH [17].
Trillo and co-workers have shown that eigenmodes of both
branches in a slab waveguide (1D geometry) are not stable
solutions of the nonlinear coupled wave equations describ-
ing SHG [10]. A small sinusoidal perturbation of the
eigenmode with a periodicity L in the transverse direction
on a wide input beam grows exponentially with a gain g

for specific spatial frequencies 2p�L as long as the pertur-
bation amplitude is small compared to the eigenmode am-
plitude itself. Substitution of the perturbed eigenmode into
the coupled wave equations under the assumption that the
eigenmode amplitude is much larger than the perturbation
amplitude yields a linear system of equations for the initial
evolution of the periodic perturbation of the beam. For a
positive eigenvalue g, the perturbation grows. The corre-
sponding eigenvector has similar real and imaginary parts,
so that amplitude as well as phase noise or seeded pertur-
bations will be amplified. Also, it does not matter if the
noise is in the FD, SH, or in both. The theory provides pre-
dictions for the relationship between the gain coefficient,
the intensity, the periodicity, and the phase mismatch [10].
Figure 1 shows the theoretically predicted dependence
of the gain on the periodicity for typical experimental
parameters.

The experiments were performed with a double-pass
LBO-based OPG/OPA system pumped by a frequency-
doubled, Q-switched, active/passive mode-locked
Nd:YAG laser at 532 nm. It provided 20-ps-long pulses
at a FD wavelength of 1.32 mm with a repetition rate
10 Hz. A 650 3 8 mm2 wide elliptical beam (full width
at half maximum) was coupled into the L � 47 mm
long, Y -cut X-propagating, titanium-indiffused lithium
niobate slab waveguide. The FD was a TM0 waveguide
mode and the SH a TE1 mode. To satisfy type-I phase
matching, the waveguide was heated in an oven to around

FIG. 1. Gain for N-branch modes versus periodicity for dif-
ferent eigenmode FD intensities.
340 ±C. Because of temperature and waveguide parameter
variations along the crystal, the wave-vector mismatch
increases towards the waveguide ends. We investigated MI
of the long-wave-type of only the N-branch eigenmodes
in the positive wave-vector mismatch range, because
they were the only nonlinear eigenmodes that could be
easily excited without SH seeding in our wave-vector
mismatch profile. The amount of SH required for this
eigenmode was adiabatically generated in the nonuniform
wave-vector mismatch profile region near the input [18]
over a distance short compared to any significant growth
of the amplitude modulation. This effectively immediate
generation of the eigenmode was verified by numerical
modeling of the coupled wave system for our input and
experimental conditions.

In order to measure the gain, the input FD beam was
seeded with a periodic perturbation with a well-defined
amplitude and periodicity. The experimental setup is
shown in Fig. 2. The seeding beam (path with mirror M
and filter F) represents a periodic phase perturbation for
the main beam. Mirror M and filter F were used to adjust
periodicity and power of the perturbation. The two input
beams with equal width were aligned carefully to overlap
in time and space, and produce well-defined interference
fringes. For a 650 mm wide beam, a maximum intensity
(power per waveguide width) of 180 W�mm in the beam
center could be launched which corresponds to a peak
power of 125 kW in the whole beam and 2.7 mJ energy
in the 20-ps-long pulse. Cylindrical lens combinations
were used to form the elliptical input beam. The beam
profiles at the waveguide’s input and output facets were
measured with a camera for both different input powers
and different positive wave-vector mismatches.

Figure 3 shows corresponding numerical simulations of
cw beam propagation along the waveguide for a 100 mm
perturbation period and a power ratio between the beams of
100:0.16. For all simulations, the details of the experiment
such as losses, nonuniform wave-vector mismatch, input
beam noise, lack of SH seeding, finite beam width, and
film characteristics, except only the pulsed input, were
taken into account. Although the existence of x �3�, in
general, modifies the eigenmodes and MI [10], its typical
values in LiNbO3 are small and can be neglected for our

FIG. 2. Experimental setup for seeding the main input beam
with a small periodic perturbation.
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FIG. 3. Numerical simulation of low power (a) and high power
(b) beam propagation for a phase mismatch of DbL � 21p at
a temperature of 334 ±C for two interfering beams with a power
ratio of 100:0.16. The peak input intensity in (b) is 63 W�mm.

experimental conditions. Figure 3(a) shows an example
of low power beam propagation. Because of the beam
crossing geometry, the seeding beam walks out of the main
beam towards the left side with its center shifted at the
output to a position of 2280 mm. Interference fringes are
obtained all along the propagation as long as the two beams
overlap. MI sets in with increasing power and the linear
interference pattern does no longer dominate the pattern
characteristics. In Fig. 3(b), the result of a simulation with
a peak intensity of 63 W�mm is shown. After a few mm
of propagation, the perturbation grows due to the MI gain
above the level of the initial linear interference fringes. It is
a characteristic of the MI that the lines of intensity maxima
of the pattern are no longer tilted relative to the main beam
direction. Now, the amplified perturbation, with maxima
locked at the positions where they were seeded, dominate
the picture.

Although it is not possible to observe the beam propaga-
tion along the waveguide since it is housed in an oven, MI
was detected by comparing the input and output beam pro-
files. At low powers, the input and output intensity distri-
butions including perturbation amplitudes and periods are
very similar. Typical output beams for a low and a high
power input with a perturbation periodicity of 110 mm and
a phase mismatch of DbL � 21p (at a crystal temperature
of 334 ±C) are shown in Fig. 4(a). It is clear that the seeded
input perturbation is amplified at high power. Because of
the temporal averaging over the pulses, the contrast ratio
of the fringes is reduced compared to the cw simulation.
Note that the high power fringes in the beam wings show
the power-dependent shift relative to the low power ones,
as predicted in the simulations. Although this is difficult to
recognize in the experiments with the 110 mm periodicity
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FIG. 4. (a) Normalized low power �6 W�mm� and high power
�120 W�mm� output beams, both with a 110 mm periodic per-
turbation at the input. (b) Spatial spectra of the square root of
the intensity of the high power �120 W�mm� input and output
beams that show the magnification of the perturbation spectral
components at the spatial frequency 60.009 mm21. The phase
mismatch is 21p at 334 ±C.

because there the fringe-position shift equals the periodic-
ity, the position-locking phenomenon was easily verified in
experiments with 175 mm periodicity. We verified that the
output beam modulation was initiated by the seeded per-
turbation and not by random noise induced MI by blocking
the weak perturbation beam. We proved that the modula-
tion disappears when the perturbation seed is switched off.

In order to quantify the MI gain, the field scans were
Fourier transformed. Typical input and output spatial
Fourier spectra are compared in Fig. 4(b). The side lines
at 60.009 mm21 in the Fourier spectrum represent the
perturbation and are a measure of the amplification of
the perturbation. The gain coefficient can be estimated
from the peaks at the perturbation frequency using the
following equation:

g�f� � L21 ln�Sout�f��Sin�f�� . (1)

L is the waveguide length, S is the spectral amplitude, and
f is the spatial perturbation frequency. The gain measure-
ments were performed only at power levels where the MI
pattern does not saturate and the net growth of the sinu-
soidal pattern is small.

The gain measurement results are shown in Figs. 5
and 6. In Fig. 5, power-dependent gain coefficients
for different perturbation periods for a constant phase
mismatch of 21p (at 334 ±C) are compared. For a per-
turbation periodicity below 85mm, we could not amplify
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FIG. 5. Dependence of the MI gain coefficient on input peak
intensity for two different perturbation periods at a constant
phase mismatch of 21p at 334 ±C. Experimental data are in
scattered points: ��� 175 mm; �D� 110 mm. Theoretical simu-
lations are the solid �175 mm� and dotted �110 mm� curves.

any seeded perturbation, which is in agreement with the
theory which predicts a threshold periodicity of 75 mm
below which the MI gain is zero for this wave-vector
mismatch and our intensity levels (see Fig. 1). Figure 6
shows the dependence of the gain on the wave-vector
mismatch for fixed periodicity. As expected, the MI gain
decreases for increasing wave-vector mismatch together
with the nonlinear phase shifts produced by the cascaded
nonlinearity which are responsible for the instability of
the second-order nonlinear eigenmodes. Numerical simu-
lations that included nonideal experimental conditions
were used to show empirically that the measured gain
coefficient is reduced by a factor of about 5 from its ideal
value due to finite beam width, nonuniform wave-vector
mismatch, waveguide losses, lack of SH seeding, and
pulsed instead of cw input. This factor is included in the
theoretically calculated gain curves in Figs. 5 and 6 to
compare to our experiment (compare Fig. 1 to Figs. 5 and
6). Note that, for a detuning of 145p , the SH component

FIG. 6. Dependence of the MI gain coefficient on input peak
intensity for three different phase mismatches and a constant
perturbation periodicity of 175 mm. Experimental data are in
scattered points: ��� DbL � 21p at 334 ±C; �=� 83.7p at
329 ±C; ��� 145.5p at 324 ±C. Simulation results are shown
with solid curves.
is very small and the results mimic closely that for a Kerr
nonlinearity.

In conclusion, we have investigated seed-induced MI
of second-order nonlinear eigenmodes in LiNbO3 slab
waveguides. By comparing the spectra of the output
and input fields, the power- and periodicity-dependent
gain coefficient was measured for different wave-vector
mismatch conditions. The results are in good quantitative
agreement with theory.

The research was supported by NSF and an ARO MURI.

[1] See, for example, E. Enfield and G. Rowlands, Nonlinear
Waves, Solitons and Chaos (Cambridge University, Cam-
bridge, England, 1990).

[2] T. Taniuti and H. Washimi, Phys. Rev. Lett. 21, 209 (1968);
J. M. Bilbaut, P. Marquie, and B. Michaux, Phys. Rev. E
51, 817 (1995); A. H. Nayfeh and D. T. Mook, Nonlin-
ear Oscillations (Wiley, New York, 1979); G. B. Whitman,
J. Fluid Mech. 22, 273 (1965).

[3] K. Tai, H. Hasegawa, and A. Tomita, Phys. Rev. Lett. 56,
135 (1986).

[4] For an early review, see S. A. Akhmanov, R. V. Khokhlov,
and A. P. Sukhorukov, Laser Handbook, edited by F. T.
Arecchi and E. O. Schulz-DuBois (North-Holland, Amster-
dam, 1972), pp. 1151–1228.

[5] A. J. Campillo, S. L. Shapiro, and B. R. Suydam, Appl.
Phys. Lett. 23, 628 (1973).

[6] A. V. Mamaev, M. Saffman, and A. A. Zozulya, Phys. Rev.
Lett. 76, 2262 (1996); D. Kip, M. Soljajic, M. Segev,
E. Eugenieva, and D. N. Christodoulides, Science 290, 495
(2000).

[7] R. A. Fuerst, D.-M. Baboiu, B. Lawrence, W. E. Torruellas,
G. I. Stegeman, S. Trillo, and S. Wabnitz, Phys. Rev. Lett.
78, 2756 (1997).

[8] A. Hasegawa and W. F. Brinkman, IEEE J. Quantum Elec-
tron. 16, 694 (1980).

[9] A. V. Mamaev, M. Saffman, D. Z. Anderson, and A. A.
Zozulya, Phys. Rev. A 54, 870 (1996); M. Soljacic,
M. Segev, T. Coskun, D. N. Christodoulides, and
A. Viswanath, Phys. Rev. Lett. 84, 467 (2000).

[10] S. Trillo and P. Ferro, Opt. Lett. 20, 438 (1995); Phys.
Rev. E 51, 4994 (1995); S. Trillo and S. Wabnitz, Phys.
Rev. E 55, R4897 (1997); S. Trillo, A. V. Buryak, and Y. S.
Kivshar, Opt. Commun. 122, 200 (1996).

[11] D.-M. Baboiu and G. I. Stegeman, Opt. Quantum Electron.
30, 937 (1998).

[12] H. Fang, R. Malendevich, R. Schiek, and G. I. Stegeman,
Opt. Lett. 25, 1786 (2000).

[13] A. Hasegawa, Opt. Lett. 9, 288 (1984).
[14] K. Tai, A. Tomita, J. L. Jewell, and A. Hasegawa, Appl.

Phys. Lett. 49, 236 (1986).
[15] P. V. Mamyshev, S. V. Chernikov, E. M. Dianov, and A. M.

Prokhorov, Opt. Lett. 15, 1365 (1990).
[16] D. Grozev, A. Shivarova, and S. Taney, J. Plasma Phys.

45, 297 (1991); D. Grozev, K. Kirov, K. Makasheva, and
A. Shivarova, IEEE Trans. Plasma Sci. 25, 415 (1997).

[17] A. E. Kaplan, Opt. Lett. 18, 1223 (1993).
[18] R. Schiek, Y. Baek, and G. I. Stegeman, J. Opt. Soc. Am.

B 15, 2255 (1998).
4531


