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Nuclear Fragmentation: Sampling the Instabilities of Binary Systems
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We derive stability conditions of asymmetric nuclear matter (ANM) and discuss the relation to mechani-
cal and chemical instabilities of general two-component systems. We show that the chemical instability
may appear as an instability of the system against isoscalarlike rather than isovectorlike fluctuations if
the interaction between the two constituent species has an attractive character as in the case of ANM.
This leads to a new kind of liquid-gas phase transition, of interest for fragmentation experiments with
radioactive beams.
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A binary system manifests a richer thermodynamical be-
havior as a consequence of a new parameter, the concen-
tration, which is required for a complete description of its
states. The phase transitions are more complex because
they have to accommodate one more conservation law. A
thermodynamical state can be unstable not only mechani-
cally but also chemically.

Nuclear matter belongs to this class of systems. The
process of multifragmentation following the collision of
heavy nuclei at medium energies is expected to show fea-
tures analogous to usual liquid-gas phase transitions of
water [1–3]. In particular, the spinodal decomposition
appears to be an important mechanism leading to phase
separation in symmetric nuclear matter (SNM) [3–6], as
confirmed in recent experiments [7]. The relevance of in-
stabilities in asymmetric-nuclear-matter (ANM) fragmen-
tation has already been discussed a few years ago [8–10].
It was shown that in these systems a kind of diffusive (or
chemical) spinodal rather than the mechanical spinodal is
significant. However the detailed nature of fluctuations re-
sponsible for such instability has not been clarified yet.
This is a quite important aspect since, as we will see, it
provides reliable information on the character of the inter-
action in the medium. We remark that the effect is leading
to the “isospin distillation” that can be experimentally ob-
served; see the recent data [11].

In one-component systems the mechanical instability is
related to instability against density fluctuations as the re-
sult of the strong attraction between constituents. In sym-
metric binary systems, such as SNM, one encounters two
kinds of density fluctuations: (i) isoscalar, when the den-
sities of the two components oscillate in phase with equal
amplitude; (ii) isovector, when the two densities fluctuate
still with equal amplitude but out of phase. Mechanical
instability is associated with instability against isoscalar
fluctuations leading to cluster formation while chemical
instability is related to instability against isovector fluctua-
tions, leading to species separation. We will show that in
asymmetric binary systems, as in ANM, this direct corre-
spondence between the nature of fluctuations and the ther-
modynamical instability is lost.
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An appropriate framework for this investigation is pro-
vided by the Fermi liquid theory which has been already
applied to the study of instabilities in symmetric binary
systems as SNM (the two components being protons and
neutrons) and the liquid 3He (spin-up and spin-down com-
ponents) [12,13].

We first investigate the thermodynamical stability of
ANM at T � 0 extending to the asymmetric case the for-
malism introduced in [12]. The distribution functions for
protons and neutrons are

f �0�
q �eq

p� � Q�mq 2 eq
p�, q � n, p , (1)

where mq are the corresponding chemical potentials.
The nucleon interaction is characterized by the Landau
parameters:

Fq1q2 � Nq1V
2 d2H

dfq1dfq2

,

Nq�T� �
Z 22dp

�2p h̄�3

≠fq�T �
≠e

q
p

,
(2)

where H is the energy density, V is the volume, and Nq

is the single-particle level density at the Fermi energy. At
T � 0 this reduces to Nq�0� � mpF,q��p2h̄3�, were pF,q
is the Fermi momentum of the q component. Thermo-
dynamical stability for T � 0 requires the ground state
energy to be an absolute minimum for the undistorted dis-
tribution functions, such that the relation

dH 2 mpdrp 2 mndrn . 0 (3)

is satisfied when we deform proton and neutron Fermi
seas. The distorted distribution functions can be written
as fq�p� � Q�eF,q�u� 2 e

q
p�, where eF,q�u� is a direction

dependent Fermi energy characterizing the distortion. We
will follow the usual multipole expansion for the variation

�deF,q�u�� � eF,q�u� 2 mq �
X

nl
qPl�cosu� (4)

and for the Landau parameters

Fq1q2 �u1 2 u2� �
X

l

F
q1q2

l Pl�cos�u1 2 u2�� . (5)
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We limit ourselves to monopolar deformations considering
here momentum independent interactions such that F

q1q2

l�0
are the only nonzero Landau parameters [14]. Then, up to
second order in the variations, Eq. (3) becomes

dH 2 mpdrp 2 mndrn �
1
2

�an2
p 1 bn2

n 1 cnpnn� ,

(6)

where nn,p � n0
n,p and

a � Np�0� �1 1 F
pp
0 �, b � Nn�0� �1 1 Fnn

0 � ,

c � Nn�0�Fpn
0 1 Np�0�Fnp

0 � 2Nn�0�Fpn
0 .

(7)

We diagonalize the right-hand side of Eq. (6) by introduc-
ing the following transformation:

u � cosbnp 1 sinbnn ,

y � 2 sinbnp 1 cosbnn ,
(8)

where the mixing angle 0 # b # p�2 is defined by

tan2b �
c

a 2 b

�
Nn�0�Fpn

0 1 Np�0�Fnp
0

Np�0� �1 1 F
pp
0 � 2 Nn�0� �1 1 Fnn

0 �
. (9)
Then Eq. (6) takes the form

dH 2 mpdrp 2 mndrn � Xu2 1 Yy2, (10)

where

X �
1
2
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q
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Y �
1
2

�a 1 b 2 sgn�c�
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2
�1 1 Fa
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Thanks to the rotation Eq. (8) we separate the total varia-
tion Eq. (3) into two independent contributions, the “nor-
mal” modes, characterized by the “mixing angle” b, which
depends on the density of states and the details of the
interaction.

In the symmetric case, Np � Nn � N , Fnn
0 � F

pp
0 and

F
np
0 � F

pn
0 , Eq. (6) reduces to
dH 2 mpdrp 2 mndrn �
N�0�

2
�1 1 Fs

0� �np 1 nn�2 1
N�0�

2
�1 1 Fa

0 � �np 2 nn�2, (13)
where Fs
0 � Fnn

0 1 F
np
0 and Fa

0 � Fnn
0 2 F

np
0 are sym-

metric and antisymmetric (or isoscalar and isovector) Lan-
dau parameters, and we recover the usual Pomeranchuk
stability conditions for pure isoscalar/isovector fluctua-
tions [10].

In the general case we interpret u and y variations as
new independent isoscalarlike and isovectorlike fluctua-
tions appropriate for asymmetric systems. The proton and
neutron densities will fluctuate in phase for isoscalarlike
variations and out of phase for isovectorlike variations; see
Eq. (8). Moreover, Fs

0g and Fa
0g, defined by Eqs. (11) and

(12), can be considered as generalized symmetric and an-
tisymmetric Landau parameters.

From Eq. (10) we see that thermodynamical stability
requires X . 0 and Y . 0. Equivalently, the following
conditions have to be fulfilled:

1 1 Fs
0g . 0 and 1 1 Fa

0g . 0 . (14)

They represent Pomeranchuk stability conditions extended
to asymmetric binary systems.

The new stability conditions, Eq. (14), are equivalent to
mechanical and chemical stability of a thermodynamical
state, [15], i.e.,µ

≠P
≠r

∂
T ,y

. 0 and

µ
≠mp

≠y

∂
T ,P

. 0 , (15)

where P is the pressure and y the proton fraction, as can
be proved by observing that [16]
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and µ
≠P
≠r

∂
T ,y
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(17)

with t �
y

1 2 y
Nn�0�
Np�0�

.

From Eqs. (10) and (14), we are led to define as
isoscalar instability the case when the state is unstable
against isoscalarlike fluctuations, i.e., when 1 1 Fs

0g , 0
(or X , 0). Analogously we deal with isovector insta-
bility when the system is unstable against isovectorlike
fluctuations, i.e., when 1 1 Fa

0g , 0 (or Y , 0).
One can easily see that in symmetric nuclear matter the

isoscalar instability (X , 0, Y . 0) appears as mechanical
instability and the isovector instability (X . 0, Y , 0) as
chemical instability. Indeed now t � 1, a � b, b � p�4,
and so 1 1 Fs

0g (or X) and � ≠P
≠r �T ,y are proportional [see

Eq. (17)]. This is not true any longer for an asymmetric
system.
4493



VOLUME 86, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 14 MAY 2001
To simplify the analysis let us assume for the moment
that the quantities a and b remain positive in the density
range we discuss here and so we can study the effect of
the interaction between the two components, given by c,
on the instabilities of the mixture. This is indeed the case
of nuclear matter.

If c , 0, i.e., for an attractive interaction between
the two components, from Eq. (12) we see that the
system is stable against isovectorlike fluctuations but it
becomes isoscalar unstable if c , 22

p
ab [see Eq. (11)].

However, thermodynamically, this instability against
isoscalarlike fluctuations will show up as a chemical insta-
bility if �2ta 2 b�t� , c , 22

p
ab or as a mechanical

instability if c , �2ta 2 b�t� , 22
p

ab [see Eq. (17)].
Therefore isoscalarlike instabilities are not necessarily
equivalent to mechanical instabilities and may manifest
instead as chemical instabilities.

If c . 0, i.e., when the interaction between the com-
ponents is repulsive, the thermodynamical state is always
stable against isoscalarlike fluctuation, but can be isovector
unstable if c . 2

p
ab. Since the system is mechanically

stable [a, b, c . 0, see Eq. (17)], the isovector instabil-
ity is now associated with chemical instability. Such a
situation will lead to a component separation of the liquid
mixture.

Following this line a complete analysis of the instabil-
ities of any binary system can be performed, in connec-
tion to signs, strengths, and density dependence of the
interactions.

We show now a quantitative calculation for asymmet-
ric nuclear matter which illustrates the previous general
discussion. We investigate the instabilities of ANM char-
acterized by a potential energy density of Skyrmelike type
[10],

Hpot�rn, rp� �
A
2

�rn 1 rp�2

r0
1

B
a 1 2

�rn 1 rp�a12

r
a11
0

1

∑
C1 2 C2

µ
r

r0

∂a∏
�rn 2 rp�2

2r0
, (18)

where r0 � 0.16 fm23 is the nuclear saturation density.
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The values of the parameters A � 2356.8 MeV,
B � 303.9 MeV, a � 1�6, C1 � 125 MeV, and
C2 � 93.5 MeV are adjusted to reproduce the saturation
properties of symmetric nuclear matter and the symmetry
energy coefficient. We also extend the discussion to finite
temperatures [17].

We first focus on the low density region, where phase
transitions of liquid-gas type are expected to be seen
in fragmentation events. Since a, b . 0 and c , 0, in
the case of the liquid-gas phase transition in asymmetric
nuclear matter we deal only with instability against
isoscalarlike fluctuations as it happens for symmetric
nuclear matter. However, at variance with the latter case,
now the instability can manifest either as chemical or
mechanical depending on the relative strength of the
interactions in the system, as discussed previously.

In Fig. 1 the circles represent the spinodal line corre-
sponding to isoscalarlike instability, as defined above, for
three values of the proton fraction. For y , 0.5 under this
border one encounters either chemical instability, in the re-
gion between the two lines, or mechanical instability, un-
der the inner line (crosses). The latter is defined by the set
of values (r, T ) for which � ≠P

≠r �T ,y � 0. We observe that
the line defining chemical instability is more robust against
the variation of the proton fraction in comparison to that
defining mechanical instability: reducing the proton frac-
tion it becomes energetically less and less favored to break
in clusters with the same initial asymmetry.

From Eqs. (16) and (17), we see that the quantity
�≠mp

≠y �T ,P changes the sign passing through zero when
we cross the spinodal line corresponding to chemical
instability and passing through infinity when we cross the
line associated with mechanical instability. However, from
Eq. (16) (see also Fig. 3), we get that at the inner spinodal
line, the ratio � ≠mp

≠y �T ,P�� ≠r

≠P �T ,y ~ XY is a finite negative
number. Therefore we conclude that the singularities
of two quantities cancel by taking the ratio. Note also
the smooth behavior of the mixing angle b through the
mechanical instability line, Fig. 2a.

Finally let us stress that, for ANM, even if we deal
with instabilities against isoscalarlike fluctuations, we
FIG. 1. Spinodal line corresponding to isoscalarlike instability of asymmetric nuclear matter (circles) and mechanical instability
(crosses) for three proton fractions: y � 0.5 (a), y � 0.25 (b), and y � 0.1 (c).
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FIG. 2. Density dependence of the mixing angle b, Eq. (9),
(a) and of the function x (b) for three proton fractions, y � 0.5
(solid line), y � 0.4 (open circles), and y � 0.1 (full circles) at
T � 1 MeV.

encounter a chemical effect, which gives rise to isospin
distillation in equilibrium phase transitions [11]. Indeed
the variation of the asymmetry �I � 1 2 2y� is

dI � np

∑
�1 2 I0�Nn

�1 1 I0�Np
tanb 2 1

∏
� np�x 2 1� , (19)

where I0 is the initial asymmetry. For y � 0.5 we have
dI � 0 but for y , 0.5, we find x , 1 (see Fig. 2b).
Therefore dI , 0 if np . 0 and the opposite for np , 0.

To be more general, we have extended our investiga-
tion also to the high density region. In Fig. 3 we plot the
density dependence of the generalized Landau parameters.
We find that for the considered interaction the system ex-
hibits another instability at high density, around 1.5 fm23,
where the quantity c becomes positive and 1 1 Fa

0g , 0
(or Y , 0).

Thermodynamically we see from Eq. (16) that this is
again a chemical instability. However now it results from
isovectorlike fluctuations, in contrast to the low density
instability. The reason is the change in the character of
the interaction between the two components. Since the in-
teraction becomes repulsive the nuclear phase can become
unstable against proton-neutron separation. We also notice
in Fig. 3 that the generalized Landau parameters display a
discontinuity where the quantity c changes the sign. Other
effective forces, with more repulsive symmetry terms, will
not show this high density chemical instability [18] that
actually could be of interest for other many body systems.

In conclusion, we have shown that in asymmetric binary
systems the relevant instability regions are defined by the
instabilities against isoscalarlike and isovectorlike fluctua-
tions. The kind of thermodynamical instability, chemical
or mechanical, will depend on the relative strength between
the various interactions acting in the system.

In particular, the liquid-gas phase transition in asymmet-
ric nuclear matter results from instability against isoscalar-
like modes rather than isovectorlike due to the attractive
character of the interaction between protons and neutrons.
This is a qualitatively new effect which is leading to the
observed isospin distillation [11]. More data are expected
FIG. 3. Density dependence of the generalized Landau
parameters for two proton fraction, y � 0.4 (a) and y � 0.1
(b) (symmetric, solid line and antisymmetric, dashed line) at
T � 1 MeV.

from the new Radioactive Beam facilities opening the pos-
sibility of direct studies of the charge dependent part of the
nuclear interaction far from normal conditions.
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