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The T � 2 excitations in even-even N � Z nuclei are calculated within the isospin cranked mean-field
approach. The response of pairing correlations to rotation in isospace is investigated. Whereas the
isovector pairing rather modestly modifies the single-particle moment of inertia in isospace, the isoscalar
pairing strongly reduces its value. This reduction of the isomoments of inertia with respect to its rigid
body value is a strong indicator of collective isoscalar pairing correlations. These results are further
generalized yielding beautiful analogies between the role of isovector pairing for the case of spatial
rotations and the role of isoscalar pairing for the case of isorotations.
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The ground state of most nuclei can be characterized in
terms of a superfluid condensate of Cooper pairs which
are formed by nucleons moving in time reversed orbits [1].
Nuclei with the identical number of protons and neutrons,
N � Z, exhibit an additional symmetry, related to the
similarity of proton and neutron wave functions at the
Fermi surface. In such a case protons and neutrons occu-
pying identical spatial orbitals may form two fundamen-
tally different Cooper pairs of either isovector (T � 1) or
isoscalar (T � 0) type [2]. The question whether isoscalar
pairing may form a condensate similar to the well-
established isovector pairing has gained considerable
interest in recent time.

Already early on it was noticed that the understanding
of excitation energies of the isobaric analog states yield
important information on the effective nuclear force, in
particular, also on its pairing component [3,4]; see also re-
cent works [5,6]. Therefore, we analyze the T � 2 excita-
tions in even-even N � Z nuclei by means of the cranking
approximation in isospace. This approximation has been
tested within an exactly solvable model by Chen et al. [7]
where it was concluded that, in conjunction with num-
ber projection, it offers a reliable approximation to the
exact solutions. Another motivation to apply the crank-
ing approximation stems from the formal analogy between
spatial and isospin rotations, following aII�I 1 1� and
aTT �T 1 1� patterns, respectively [8]. The crucial quan-
tity of our investigation is the inertia parameter in isospace,
aT (reciprocal of the isomoment of inertia �T ). Indeed, the
study of the rotational spectra was crucial in establishing
evidence for superfluidity in atomic nuclei [9]. Similarly,
our microscopic calculations of the nuclear inertia parame-
ter aT in isospace show that it strongly depends on the
short range pairing correlations. However, in contrast to
spatial rotations it is shown that aT is rather insensitive
to isovector but extremely sensitive to isoscalar proton-
neutron pairing correlations.

Before entering the details of our model, let us consider
a single-particle (sp) Routhian Ĥv � Ĥsp 2 h̄v t̂x . For
0031-9007�01�86(20)�4488(4)$15.00
simplicity, let us also assume that the spectrum of Ĥsp

is equidistant �ei � ide� and isosymmetric. Hence, at
h̄v � 0 each eigenstate of Ĥv is fourfold degenerate. The
isocranking term, 2h̄vt̂x , lifts the isospin but not Kramers
degeneracy resulting in j2� �

1
p

2
�jn� 2 jp�� and j1� �

1
p

2
�jn� 1 jp�� doublets, with isoalignment of �6jtxj6� �

61�2, respectively (Fig. 1). Clearly, the ground state con-
figuration changes stepwise at the crossing frequencies:
h̄v

�n�
c � de, 3de, 5de, . . . , �2n 2 1�de. At each crossing
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FIG. 1. The single-particle Routhians (upper panel) versus the
isocranking frequency for the equidistant level model. Solid
(dashed) lines depict tx � 11�2 (tx � 21�2) sp states, re-
spectively. At each crossing frequency (indicated by arrows) the
configuration changes, and hence excitation energy and isoalign-
ment (lower panel).
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frequency two isoscalar pairs �j1� j2�� are emptied and
two isovectors �j1� j1�� become occupied. Hence, the to-
tal isoalignment, �t̂x� � Tx , changes in steps of DTx � 2.
Since at the same time Tz � Ty � 0, i.e., DTx � DT , the
stepwise increase corresponds to noncollective isorotation.
The ground state band (gsb) consists of only even isospin
states, T � 0, 2, 4, . . . , 2n in complete analogy to the even
spin sequence in the gsb of spatially rotating even-even nu-
clei. Exploring further this analogy, one can show that the
even-T sequence in the gsb is a consequence of isosigna-
ture symmetry, R̂t � exp�2ip t̂x�, similar to the signature
symmetry conservation, R̂ � exp�2ip ĵx�, for rotational
motion. It is of importance to underline that odd-T states
can be reached only by the proper particle-hole excitation
at h̄v � 0.

Once the crossing frequencies are calculated, it is
straightforward to compute the excitation energy ET (with
respect to the gs) spectrum of the isorotational gsb band:

ET � Ev 1 h̄vTx � 2
Tx�2X

i�1

h̄v�i�
c �

1
2

deT2
x . (1)

The schematic sp model leads to the classical rotational
formula 	T2

x with an inertia parameter proportional to the
single-particle splitting at the Fermi energy.

Let us now briefly investigate how the sp model is
affected by the presence of isovector pairing correla-
tions. To study this issue we have performed a series of
Lipkin-Nogami calculations for selected N � Z nuclei
using the deformed Woods-Saxon (WS) potential as a
mean-field (at fixed deformation) and standard isovector
seniority-type pairing interaction [10]. A representative
example reflecting the generic results of the study is
illustrated in Fig. 2. The major modification introduced
by isovector pairing correlations is the smooth increase of
the isoalignment with isocranking frequency; see Fig. 2a.
The isovector pairing introduces a kind of collectivity
on top of the sp model but does not affect the bulk
properties. The value of the inertia parameter depends on
the shell structure at the Fermi energy but in a modest and
intuitively understandable way. Namely, as compared to
the sp estimate, it decreases (increases) when shell gaps
are present (absent). It is also interesting to note that the
smoothing effect depends only weakly on the strength of
isovector pairing correlations, GT�1. The alignment as
well as the excitation energy almost does not change, even
when the isovector pairing strength, GT�1, is strongly
reduced. Henceforth, the excitation energy of the T states
will be computed at the standard isocranking constraint
Tx �

p
T �T 1 1�.

The main objective of our study is to clarify the role
played by isoscalar pairing correlations, in particular, we
show that one simultaneously (i) can recover the Wigner
energy as it was shown in our previous work [10,11] and
(ii) determine the excitation energies of the T � 2 states
in even-even N � Z nuclei. In addition, our subsequent
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FIG. 2. Alignment versus frequency (a) and excitation energy
versus alignment (b) for the sp model (discrete step function
and �) and for a model including isovector pairing correlations.
Calculations have been performed for 48Cr at fixed deformation
b2 � 0.25.

publication will show that the mean-field model incorpo-
rating isoscalar pairing correlations also is able to explain
on the same footing the excitation energies of T � 1 states
in even-even N � Z nuclei as well as the competition of
T � 0 and T � 1 states in odd-odd N � Z nuclei [12].
Our Hamiltonian is based on the deformed mean-field po-
tential of a WS type [13]. The two-body residual interac-
tion contains both isovector and isoscalar seniority pairing:

Ĥv � ĥWS 1 GT�1P̂
y
1 P̂1 1 GT�0P̂

y
0 P̂0 2 h̄v t̂x , (2)

where P̂
y
1 and P̂

y
0 create isovector and isoscalar pairs,

respectively. The Hamiltonian (2) is solved using the
Hartree-Fock-Bogoliubov equations with the Lipkin-
Nogami method. The model is very similar to the one
described in detail in Ref. [11]. However, different from
Ref. [11], we now employ the most general Bogoliubov
transformation. It allows us to fully explore the isoscalar
pairing channel without any symmetry induced restric-
tions, i.e., to include simultaneously aa and aã isoscalar
pairs. In the present study, where we confine to I � 0
states in even-even nuclei, it is sufficient to consider aã
T � 0 correlations. Moreover, since this study aims at a
qualitative description, we have assumed near spherical
deformation, b2 � 0.05, for all nuclei. A drawback
of our model is the lacking response of the isovector
particle-hole (ph) field to rotations in isospace. To fully
investigate in a quantitative way the interplay of isoscalar
pairing and rotations in isospace, requires self-consistent
Hartree-Fock-Bogoliubov calculations with realistic
isovector and isoscalar two-body interactions in both ph
4489
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and pairing channels. This, however, is clearly beyond
our present approach.

The isovector pairing strength, GT�1, is computed using
the average gap method of Ref. [14] where the number
of proton (and neutron) WS states retained for the pair-
ing calculations is consistently put to A�2. To compute
the strength of the isoscalar pairing correlations, GT�0, we
follow the prescription given in Ref. [11]. This method is
based on the assumption that, within the mean-field model,
the Wigner energy is predominantly due to the T � 0 pair-
ing correlations. In other words we fit GT�0 to reproduce
roughly the Wigner energy strength W�A� 
 47�A MeV
using the technique provided in Ref. [15]. The result of
these calculations is shown in Fig. 3a. Interestingly, to ob-
tain the proper value of W�A�, the mass scaling of isovec-
tor and isoscalar pairing strengths has to be different. The
ratio xT�0 � GT�0�GT�1 necessary to reproduce the em-
pirical trends decreases smoothly from xT�0 
 1.65 at the
beginning of the sd shell to xT�0 
 1.40 in the f7�2 sub-
shell as shown in the inset. The calculated and empirical
excitation energies of the lowest T � 2 states, DET�2, for
even-even N � Z, 20 # A # 56, nuclei are displayed in
Fig. 3b. Calculations including isoscalar pairing correla-
tions (≤) are in excellent agreement with the empirical data
(�). In contrast, calculations including only the isovector
pairing field (¶) account for roughly half of the empirical
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FIG. 3. Calculated Wigner energy strength W�A� (a) in N �
Z nuclei. The inset shows the isovector and isoscalar pair-
ing strength parameters used to reproduce the smooth empiri-
cal trend of the Wigner energy strength 47�A MeV. The lower
panel (b) shows the excitation energy of the T � 2, I � 0 states.
The experimental data values are marked by (�); the calcula-
tions including both T � 0 and T � 1 pairings are marked with
(≤) and the calculations with T � 1 pairing only are labeled
with (¶).
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excitation energy. It is interesting to notice that although
generally DET�2 decreases as a function of A, it clearly
rises at closed (sub)shells, particularly for N � Z � 20.
This nicely reflects the dominant role played by the sp sub-
structure DET�2 ~ de [see Eq. (1)] and the reduced role
of the pairing correlations (in particular, the T � 0 pair-
ing) at shell closure. Note also the pronounced smoothing
effect of isoscalar pairing on the DET�2 excitations at shell
closure. Last but not least, it is important to remember that
the Wigner energy and the T � 2 excitations are calculated
in a totally different manner.

There is an appealing correspondence between the role
of isoscalar and isovector correlations. The binding energy
of even nuclei is lowered with respect to their odd neigh-
bors. Similarly, the presence of isoscalar pairing correla-
tions lowers the ground state of even-even N � Z nuclei
and accounts for the missing binding energy commonly
known as the Wigner energy [10]. Analogous, the gener-
alized blocking of isoscalar pairing results in reduced bind-
ing when moving from the N � Z line. Isovector pairing
is weakened at high angular momenta due to the Corio-
lis effect that tends to align the angular momenta of the
nucleons along the rotational axis. Similarly, because the
T � 0 pairs have isospins coupled antiparallel, rotations
in isospace tend to destroy these correlations. In contrast,
isovector pairs have their isospins coupled parallel and are
hardly affected by isorotations. Pairing correlations as
a function of rotational frequency in either real space or
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FIG. 4. Alignment (a) and isoscalar and isovector gap parame-
ters (b) versus isocranking frequency calculated for 24Mg (≤) and
48Cr (¶). The figure illustrates the phase transition leading to
the disappearance of isoscalar T � 0 pairing correlations (lower
panel) once the alignment reaches a value of

p
6 (upper panel).
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FIG. 5. Isomoment of inertia (MoI), �
�x�
T � Tx�h̄v, for a se-

quence of N 2 Z � 0, 2, 4, 6, 8 Cr isotopes at constant de-
formation (b2 � 0.25) versus rotational frequency. The figure
clearly illustrates the pronounced effect of the T � 0 pair cor-
relations in N 2 Z � 0 and 2 isotopes and the phase transition
raising the MoI to the “rigid body” value at high frequencies.

isospace are quenched in a similar fashion like the mag-
netic field destroys the electronic Cooper pairs in metallic
superconductors. Hence, with increasing isocranking fre-
quency one does expect a bulk phase transition similar to
the well-known Meissner effect [16].

The phase transition discussed above on general
grounds indeed occurs systematically in our calculations.
Two representative cases are depicted in Fig. 4. The phase
transition (cf. lower panel of Fig. 4) takes place almost
exactly at, or just before the isoalignment (cf. upper panel
of Fig. 4) reaches the value of Tx �

p
6, corresponding

to the T � 2 state. Evidently, once we reach the T � 2
states, isoscalar pairing correlations have essentially
dropped to zero. At the same time, isovector pairing
correlations are still strong. The quenching of isoscalar
pairing in the ground state of jN 2 Zj � 4 nuclei is a
general feature of most known calculations, independent
of the interaction [10,11,17]. These findings are therefore
consistent with the isobaric symmetry which demands
that the structure (and hence, also the excitation energy)
of T � 2, Tz � 0 states to be similar to the structure of
T � 2, Tz � 62 members of the T � 2 quintuplet. The
T � 2, Tz � 62 states are just the ground states of the
jN 2 Zj � 4 nuclei, since, by the rule, the ground states
of even-even nuclei are the states of minimum isospin:
T � jTzj � jN 2 Zj�2.

The dependence of the isomoments of inertia (MoI),
�

�x�
T � Tx�h̄v as a function of the isocranking frequency
and N 2 Z for a sequence of Cr isotopes is further illus-
trated in Fig. 5. At small frequencies the T � 0 pairing
phase is present only in the Tz � 0, 1 isotopes, where it
strongly lowers the MoI. At high frequency a phase tran-
sition takes place resulting in a rapid increase of the MoI
to the “rigid body” value, i.e., the value corresponding to
�

�x�
T for the T � 0 unpaired system.
In summary, the response of pairing correlations to ro-

tations in isospace is investigated within a simple model.
The present calculations show that on a qualitative level,
the mean-field method is capable to account for both mass
excess in N � Z nuclei and the MoI in isospace if and only
if the short range correlations take into account isoscalar
pairing. Pairing correlations of isovector and isoscalar
types respond totally different to rotations in isospace. The
presence of isoscalar pairing strongly reduces the MoI in
isospace, but only for low values of T . With increasing
isocranking frequency, isospin starts to align, and isopairs
become broken, resulting eventually in the quenching of
isoscalar pairing and a rapid increase of the MoI. In the
regime of large isospin, no isoscalar pairing is present.
These results are in beautiful analogy to spatial rotations.
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