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BPS States in M Theory and Twistorial Constituents
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We provide a complete algebraic description of Bogomol’nyi-Prasad-Sommerfield (BPS) states in M
theory in terms of primary constituents that we call BPS preons. We argue that any BPS state preserving
k of the 32 supersymmetries is a composite of �32 2 k� BPS preons. In particular, the BPS states
corresponding to the basic M2 and M5 branes are composed of 16 BPS preons. By extending the M
algebra to a generalized D � 11 conformal superalgebra osp�1 j 64� we relate the BPS preons with its
fundamental representation, the D � 11 supertwistors.
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(1) Introduction.—The dynamical description of the
eleven-dimensional M theory [1,2], which should unify all
fundamental interactions including gravity, is not known.
It is characterized by a set of (conjectured) duality sym-
metries and by the low energy limit, D � 11 supergravity
[3]. Relevant information is provided by the D � 11
Poincaré superalgebra recently called M algebra [4]

�Qa ,Qb� � Zab , �Qa ,Zab� � 0 ,

Zab � G
m
abPm 1 iG

mn
abZmn 1 G

m1...m5

ab Zm1...m5 ,
(1)

where G
m
ab � �Gm�a.

gCgb , etc., Qa is a 32-component
real Majorana spinor of supercharges, and the symmetric
32 3 32 generator Zab of tensorial (central with respect
to Qa) charges extends the eleven momentum components
Pm to a set of 528 � 11 1 55 1 462 generators. The ad-
ditional 517 charges characterize the basic M branes. As-
suming that the M algebra is valid for all energies, the
information about the spectrum of states in M theory can
be deduced from the representation theory of the algebra
(1). Of special importance is the notion of Bogomol’nyi-
Prasad-Sommerfield (BPS) states. A BPS state jk� can be
defined as an eigenstate with eigenvalue zab of the “gener-
alized momentum” generator, Zabjk� � zabjk�, such that
detzab � 0:

k
32

2 BPS state: �rank zab � 32 2 k, 32 . k $ 1� .

(2)

Moreover [5], Eq. (2) implies that the BPS state jk� pre-
serves a fraction n � k

32 of supersymmetries.
Without a knowledge of the fundamental dynamics of

M theory, it is difficult to determine which representations
of (1) are primary and which are composite. A point of
view based on the study of solitonic solutions of D � 11
supergravity [10,11] considers as the most elementary ones
the 1

2 -BPS states describing the M2 and M5 branes, the
M9 brane and the M-KK6 brane (D � 11 Kaluza-Klein
monopole), as well as the M wave (M0 brane). By con-
sidering superpositions of these D � 11 elementary ob-
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jects (intersecting branes and branes ending on branes) one
can construct k

32 -BPS D � 11 supergravity solitons with
k # 16 (n #

1
2 ) [5,12]. Despite the fact that exotic BPS

states with n � k
32 . 1

2 can also be treated algebraically
as a kind of superposition of branes and antibranes [12,13],
solitonic solutions are known only for BPS states that pre-
serve a fraction n # 1

2 of supersymmetries.
In this paper we propose another algebraic scheme

aimed to describe the representations of M algebra, with a
different choice of primary and composite objects. Equa-
tion (2) suggests that the most elementary component
permitting one to construct all BPS states as composites
corresponds to tensorial charges with rank zab � 1, or
k � 31. We shall call BPS preons the hypothetical objects
carrying these “elementary values” of zab . Thus, a BPS
preon may be characterized by the following choice of
central charges matrix:

zab � lalb , a, b � 1, . . . , 32 , (3)

where la is a real (Majorana) SO(1, 10) bosonic spinor.
We notice that Eq. (3) can be looked at as an extension of
the Penrose formula (see, e.g., [14]) expressing a massless
D � 4 four-momentum as a bilinear of a Weyl spinor pA

pm �
1
2

�sm�A �BpAp̄
�B, A, �B � 1, 2 , (4)

to the case of D � 11 generalized momenta (with Abelian
addition law). Following the spirit of the twistor ap-
proach [14–16] we generalize Eq. (3) to the general case
of k

32 -BPS states by

zab � Sn
i�1li

ali
b , n � 32 2 k, 32 . k $ 1 ,

(5)

with n linearly independent l’s. Thus, the k
32 -BPS state

may be regarded as composed of n � �32 2 k� BPS
preons.

Group theory methods often compensate the lack of
knowledge about dynamical mechanisms. At this stage our
aim is modest, and begins by pointing out an interesting
© 2001 The American Physical Society 4451
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structure of the representation theory of the M algebra
that arises when the tensorial charges are introduced as
bilinears of spinors. Further, to conjecture the dynam-
ics of BPS preons we may follow the considerations in
[17,18] and enlarge the M algebra to the superconfor-
mal one osp�1 j 64� [6,19]. In such a dynamical picture
a BPS preon (a fundamental 31

32 -BPS state) is described by
a D � 11 supertwistor �la , va , j�, with j fermionic, i.e.,
by the fundamental representation of OSp�1 j 64�.

We stress that our method provides a complete algebraic
classification of all BPS states (note also that, although we
consider here the D � 11 case, our approach applies to
any D). In particular, we shall describe in the language
of n BPS preons the special choices of zab describing
M2 branes and M5 branes (n � 16), two orthogonal M
branes (n � 24) and the example [13] of an exotic BPS
state with n � 3

4 . Because of the lack of D � 11 solutions
corresponding to exotic BPS states, one can conjecture that
branes that can be described in D � 11 spacetime should
have n $ 16 in Eq. (5).

(2) Arbitrary BPS states as composites of BPS pre-
ons.—We show now that any k

32 -BPS state jk� can be
characterized by Eq. (5). GL�32, �� is the maximal auto-
morphism group of the algebra (1) [20,21,26]. As the ma-
trix zab � 
kjZabjk� is symmetric and positive-definite,
zabxaxb � 2S

32
l�1j
kjxaQ̂ajl�j2 $ 0, it can be diagonal-

ized by a GL�32, �� matrix Ga
. b ,

zab � Gg
. az

�0�
gdG

d
. b . (6)

Moreover, the diagonal matrix z
�0�
gd can be chosen as

follows:

z
�0�
gd � diag�1, . . .n , 1, 0, . . .k , 0� . (7)

Thus, we see that Eq. (6) can be written in the form (5)
provided that

li
a � Gi

. a , i � 1, . . . , n � 32 2 k . (8)

In the new basis Q�0�
a defined by Q�0�

a � �G21�b
. aQb , the

M algebra (1) diagonalizes on BPS states so that

�Q�0�
i ,Q

�0�
j � jk� � dijjk� ,

�Q�0�
i ,Q�0�

r � jk� � �Q�0�
r ,Q�0�

s � jk� � 0 ,
(9)

r , s � n 1 1, . . . , 32. Hence, the set of 32 supercharges
Q�0�

a � �Q�0�
i ,Q

�0�
r � acting on the BPS state jk� splits into

k generators Q
�0�
r of supersymmetries preserving the BPS

state (i.e., one can put consistently Q
�0�
r jk� � 0), and n �

32 2 k generators Q
�0�
i which describe the set of broken

supersymmetries. To summarize, the eigenvalues zab of
the tensorial charges that characterize a BPS state preserv-
ing k , 32 supersymmetries may be expressed by Eq. (5)
in terms of 32 2 k Majorana spin(1, 10) bosonic spinors
li

a . A BPS preon state with zab � lalb preserves k �
31 supersymmetries and n � k

32 BPS states are composed
of n � 32 2 k preons.
4452
Equation (5) implies that the tensorial charges are pre-
served under O�n� transformations of the n spinors li

a :

li0
a � Oi

jl
j
a , OTO � 1n, i � 1, . . . , n . (10)

The SO�n� � SO�32 2 k� rotations constitute an internal
symmetry of the k

32 -BPS states. For the 1
2 -BPS states

associated with the fundamental M2 and M5 branes, in
particular, SO�n� � SO�16�. This group corresponds in
D � 11 to the unitary internal symmetry U�n� in D � 4
that was introduced in the framework of twistor theory for
n-twistor composite systems [15,16]. In our scheme we
see that the dimension n of SO�n� is equal to the number
of broken supersymmetries.

(3) Physical 1
2 BPS states and their superpositions.—

The fundamental BPS preons have all the bosonic charges
pm ~ lCGml, zmn ~ lCGmnl, zm1...m5 ~ lCGm1...m5l

nonvanishing. We show now in our framework that the
M2 and M5 1

2 -BPS states can be composed out of 16 BPS
preons.

Let us consider the M2 brane, what implies zm1...m5 � 0.
Thus, Eq. (5) acquires the form

zab � pmG
m
ab 1 zmniG

mn
ab � Sn

i�1li
ali

b , (11)

where, at this stage, we do not fix n. In the rest frame
of a BPS massive state, pm � m�1, 0, . . . , 0�. As we are
dealing with the M2 brane, but not with the M9 brane, we
shall assume that in this frame zmn has only spacelike com-
ponents zmn � d

I
�md

J
n�zIJ . In particular, we may choose

the space slice of the M2 world volume in the �12� plane,
zmn � d

1
�md

2
n�z where z � 2z12. Using the spin�1, 2� ≠

spin�8� covariant splitting of D � 11 spinors and G matri-
ces (see, e.g., [22]),

li
a �

√
li
aq

l
ia
�q

!
, a � 1, 2, q, �q � 1, . . . , 8 ,

(12)

iG12 � � I16
0

0
2I16

�, g
0
ab � dab, Eq. (11) can be written as

M2 : 1 2 2 2 2 2 2 2 2 2 2

zab �

√
�m 1 z�dabdqp 0

0 �m 2 z�dabd�q �p

!

� Sn
i�1

√
li
aql

i
bp li

aql
ib
�p

l
ia
�q l

i
bp l

ia
�q l

ib
�p

!
. (13)

The matrix zab has either rank 32 (when m fi 6z) or rank
16 (when m � 6z). Assuming z . 0 we conclude that
the M2 brane BPS state appears when m � z and that
preserves 1	2 of the target supersymmetries. In this case
Eq. (13) implies

Sn
i�1�li

aqli
bp� � 2zdabdqp , (14)

Sn
i�1�lia

�q li
bp� � 0 � Sn

i�1�lia
�q l

ib
�p � . (15)

Equation (14) has a solution only if n $ 16. Moreover, as
rank zab � 16 for m � z, we need just 16 BPS preons,
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described by li
aq [ �1 ≠ O�16�; from (15) l

ia
�p � 0 fol-

lows. Using the O�16� symmetry [Eq. (5)] we see that in
a special frame the spinors li

a (i � 1, . . . , 16) satisfying
Eqs. (14) and (15) and describing a M2-brane BPS state
may be written as l

i
�a�,

M2 �m � z�: l
i
�a� �

√p
2z di

aq
0

!
. (16)

To obtain the set of li
a in an arbitrary frame we perform a

Lorentz rotation of (16) by means of a spin�1, 10� matrix

ya
�b� � �ya

aq, yaa �q� [ spin�1, 10� ,

a � 1, 2, q � 1, . . . , 8, �q � 1, . . . , 8 ,
(17)

and we get

M2: li
a � ya

�b�l
i
�b� �

p
2z ya

aqdi
aq . (18)

Note that only one of the two �spin�1, 2� ≠ spin�8��-
covariant 32 3 16 blocks (cf. [22]) of the spinorial
Lorentz frame matrix (17), ya

aq, enters in Eq. (18) [23].
For a M5-brane BPS state corresponding to the vanish-

ing world volume gauge field the central charges matrix is

zab � pmG
m
ab 1 zm1...m5G

m1...m5

ab � S16
i�1li

ali
b . (19)

By considerations analogous to those of the M2-brane case
one finds that the 16 BPS preons needed for such a BPS
state of a M5 brane are associated with

M5: li
a � ya

�b�l
i
�b� �

p
2z ya

aqdi
aq ,

a � 1, . . . , 4 �spin�1, 5�� q � 1, . . . , 4 �spin�5�� ,
(20)

where z � m � 5! z1...5 . 0, and ya
aq is the 16 3 32

�spin�1, 5� ≠ spin�5��-covariant block of the Lorentz frame
matrix ya

�b�. Thus, the M2 and M5 BPS states are de-
scribed by a highly constrained set of D � 11 spinors li

a

[since ya
�b� in Eq. (18) as well as in Eq. (20) belongs to

spin�1, 10�].
To describe a superposition of M branes preserving n �

k
32 ,

1
2 supersymmetry one needs n . 16 BPS preons. In

particular, for the system of two orthogonal M2 branes

1 2

M2 ≠ M2

3 4

with equal positive charges z12 � z34 � m	4 in the rest
frame we get

zab � m

√
g

0
abdqp 1 P

�2�
aq bp 0

0 P
�2�ab

�q �p

!
� S24

i�1li
ali

b ,

(21)

where P
�2�ab

�q �p � 1
2 �g0 abd�q �p 2 ´abg

1
q �qg

2
q �p� is the or-

thogonal projector, e12 � 1, g
0,1,2
ab , g0ab , . . . , are SO�1, 2�

gamma matrices, and g
1
q �q, . . . , g

8
q �q are the 8 3 8 SO�8�

Pauli matrices. Thus, rank zab � 24 and we need 24
BPS preons which can be characterized by (î � 1, . . . , 16;
ĩ � 1, . . . , 8, i � 1, . . . , 24)

li
a �

√√√√
l̂î
aq
0

!
,

√
0

l̃
aĩ
�q

!!!!
, (22)

where the l̂î
aq and the l̃

aĩ
�q are constrained by

S
16
î�1l̂î

aql̂î
bp � m�g0

abdqp 1 P �2�
aq bp� ,

S
8
ĩ�1l̃

aĩ
�q l̃

bĩ
�p � mP

�2�ab
�q �p .

(23)

In an arbitrary frame li
a � �ya

aql̂î
aq, yaa �ql̃

aĩ
�q �, where

ya
aq, yaa �q are the spinor frame variables (17).
The 1

4 -BPS state (21) as well as many other n �
k
32 ,

1
2 BPS states are described by solitonic solutions of

the D � 11 supergravity [10]. Our approach allows us
to consider as well the “exotic” BPS states with n .

1
2 .

They are described by n � 32 2 k , 16 BPS preons.
For instance, the massive 3

4 -BPS state in [13], with z12 �
2m	2, z2345 � 2z26789# � 7m	5! in the rest frame, is
characterized by

zab � 4m

√
0 0
0 P

�6�ab
�q �p

!
� S8

i�1li
ali

b , (24)

where now P
�6�ab

�q �p � 1
2 �g0abd�q �p 6 g2abg

1234
�q �p � are

orthogonal projectors (P �1� 1 P �2� � g0 ≠ I , g
1234
�q �p �

g
1
q �qg

2
q �rg

3
p �rg

4
p �p � 2g

5678
�q �p ). Thus, rank zab � 8 and one

concludes that the BPS state preserves n � 3	4 of super-
symmetry [13]. In an arbitrary frame zab � 4myaa �q 3

P
�6�ab

�q �p ybb �q and the 3
4 -BPS state can be described by

8 BPS preons

laĩ
a � yaa �ql̃

aĩ
�q , ĩ � 1, . . . , 8 , (25)

where the 8 l̃
aĩ
�q are constrained by S

8
ĩ�1l̃

aĩ
�q l̃

bĩ
�p �

4mP
�6�ab

�q �p and ya
aq, yaa �q are the spinorial Lorentz frame

variables of Eq. (17).
There are no solitonic solutions for the exotic BPS states

known. Moreover, general k-symmetry arguments [24]
and the study of the simplest supersymmetric field theo-
ries [26] indicate that, probably, such solitonic solutions do
not exist in the standard (i.e., unenlarged) D � 11 space-
time. This suggests that only composites of n $ 16 BPS
preons can be described in a D � 11 standard spacetime
framework.

(4) BPS preons, enlarged superspaces, and OSp�1 j 64�
supertwistors.— It seems natural to assume that a dynami-
cal realization of exotic states requires a new geometric
framework, going beyond the standard D � 11 spacetime
[27]. The most straightforward idea is to treat all tensorial
charges as generalized momenta in a large conjugate space
of 528 dimensions. The simplest supersymmetric dynam-
ics in D � 4 superspace—Brink-Schwarz massless super-
particle—can be extended to such a large space by two
different ways of generalizing the mass-shell condition.

(i) The Sp�32�-invariant generalization zabCbgzgd � 0
of p2 � 0 (cf. [29]), where the Sp�32� metric C is the an-
tisymmetric D � 11 Majorana charge-conjugation matrix.
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(ii) The general, less restrictive, GL�32, ��-invariant
condition (see, e.g., [26]) detzab � 0, characterizing all
k
32 -BPS states with 1 # k , 32.

To introduce a dynamical scheme for the proposed BPS
preons of M algebra one can develop a new spinorial ge-
ometry by doubling the D � 11 Lorenz spinors to intro-
duce a D � 11 twistor TA � �la , va� �A � 1, . . . , 64�
satisfying a generalized Penrose incidence equation

va � xablb , xab � xba , (26)
where

xab � xmGab
m 1 ymniGab

mn 1 ym1...m5Gab
m1...m5

(27)
describes the 528 � 11 1 55 1 462 coordinates dual to
the Pm, Zmn , Zm1...m5 generalized momenta. In a super-
symmetric theory, Eq. (26) has to be supplemented by
(cf. [17,18,30])

j � uala . (28)
Then, TA � �TA, j� defines a supertwistor, which is the
fundamental representation of the generalized D � 11
conformal superalgebra osp�1 j 64�. In such a framework
the basic geometry is described by the D � 11 super-
twistors �TA, j� which we propose to interpret as BPS
preon phase space coordinates. Indeed, using Eqs. (26)
and (5) one obtains a relation (modulo an exterior deriva-
tive) between the canonical Liouville one-forms describing
the symplectic structure in the enlarged spacetime (27)
and the D � 11 twistor space coordinates,
zabdx

ab � Sn
i�1li

ali
bdx

ab � 2Sn
i�1vaidli

a , (29)
a relation that can be supersymmetrized [17,18]. For
non-BPS states, for which detzab fi 0, one needs the
maximal number, 32, of BPS preons described by 32 su-
pertwistors T

i
A � �li

a , vai , ji�. Using 32 copies of the
Eqs. (26) and (28) one can express all enlarged superspace
coordinates �xab , ua� as composites of spinorial preonic
coordinates as follows:

xab � S32
i�1vai�l21�b

i , ua � S32
i�1ji�l21�a

i .
(30)

If we diminish the number of BPS preons, the geometry
becomes gradually more spinorial and detached from a
spacetime framework. In particular, the most elementary
constituent of M-theory matter in the present approach,
a single BPS preon, is described by the purely spinorial
geometry of a single supertwistor.

This work has been partially supported by the DGICYT
Research Grant No. PB 96-0756, the Ministerio de Edu-
cación y Cultura (I. B.), the Generalitat Valenciana and
KBN Grant No. 5 P03B 05620 (J. L.), and the Junta de
Castilla y León (Research Grant No. C02/199). We thank
J. Simón for helpful discussions.

*Email address: bandos@ific.uv.es
†Email address: j.a.de.azcarraga@ific.uv.es
‡Email address: izquierd@fta.uva.es
§Email address: lukier@ift.uni.wroc.pl

[1] E. Witten, hep-th/9507121.
4454
[2] P. K. Townsend, Phys. Lett. B 350, 184 (1995).
[3] E. Cremmer, B. Julia, and J. Scherk, Phys. Lett. 76B, 409

(1978); E. Cremmer and B. Julia, Nucl. Phys. B159, 141
(1979).

[4] We shall consider here only the conventional form of
D � 11 M algebra [5,6], without additional fermionic
(spinorial) charges. For its general form see [7]. For the
topological origin of “central” charges and their role in
the partial breaking of supersymmetry see [8]; for a gen-
eral discussion of extended supersymmetry algebras and
extended superspaces see [9].

[5] P. K. Townsend, hep-th/9712004.
[6] J. W. van Holten and A. van Proeyen, J. Phys. A 15, 3763

(1982).
[7] E. Sezgin, Phys. Lett. B 392, 321 (1997).
[8] J. A. de Azcárraga, J. P. Gauntlett, J. M. Izquierdo, and P. K.

Townsend, Phys. Rev. Lett. 63, 2443 (1989).
[9] C. Chryssomalakos, J. A. de Azcárraga, J. M. Izquierdo,

and J. C. Pérez Bueno, Nucl. Phys. B567, 293 (2000).
[10] M. J. Duff, R. R. Khuri, and J. X. Lu, Phys. Rep. 259, 213

(1995); K. S. Stelle, hep-th/9803116.
[11] C. Hull, Nucl. Phys. B509, 216 (1998).
[12] J. Molins and J. Simon, Phys. Rev. D 62, 125019 (2000).
[13] J. P. Gauntlett and C. M. Hull, J. High Energy Phys. 0001,

004 (2000).
[14] R. Penrose and M. A. H. MacCallum, Phys. Rep. 6, 241

(1972).
[15] R. Penrose, Rep. Math. Phys. 12, 65 (1977).
[16] L. P. Hughston, Twistors and Particles, Lecture Notes in

Physics Vol. 97 (Springer-Verlag, Berlin, 1979).
[17] I. Bandos and J. Lukierski, Mod. Phys. Lett. 14, 1257

(1999); Lect. Notes Phys. 539, 195 (2000).
[18] I. Bandos, J. Lukierski, and D. Sorokin, Phys. Rev. D 61,

045002 (2000).
[19] I. Bars, Phys. Lett. B 457, 275 (1999); 483, 248 (2000).
[20] O. Baerwald and P. West, Phys. Lett. B 476, 157 (2000).
[21] P. West, J. High Energy Phys. 0008, 007 (2000).
[22] I. Bandos and A. Zheltukhin, JETP Lett. 55, 81 (1992);

Int. J. Mod. Phys. A 8, 1801 (1993); Classical Quantum
Gravity 12, 609 (1995).

[23] This block is used in the Lorentz harmonics formulation
of the world volume action of the M2 brane [22] to
build the projector of the irreducible k-symmetry 1

2 �1 1
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