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We provide a complete algebraic description of Bogomol’nyi-Prasad-Sommerfield (BPS) states in M
theory in terms of primary constituents that we call BPS preons. We argue that any BPS state preserving
k of the 32 supersymmetries is a composite of (32 — k) BPS preons. In particular, the BPS states
corresponding to the basic M2 and M5 branes are composed of 16 BPS preons. By extending the M
algebra to a generalized D = 11 conformal superalgebra osp(1|64) we relate the BPS preons with its
fundamental representation, the D = 11 supertwistors.
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(1) Introduction.—The dynamical description of the
eleven-dimensional M theory [1,2], which should unify all
fundamental interactions including gravity, is not known.
It is characterized by a set of (conjectured) duality sym-
metries and by the low energy limit, D = 11 supergravity
[3]. Relevant information is provided by the D = 11
Poincaré superalgebra recently called M algebra [4]

{Qas Qﬁ} = Za,B» [Qa7 Zaﬂ] =0,
Zap =ThpPu + iThpZu + Tas ™ Zy s

where F,f:ﬂ = (I'*)o.7C,p, etc., Q4 is a 32-component
real Majorana spinor of supercharges, and the symmetric
32 X 32 generator Z,g of tensorial (central with respect
to Q,) charges extends the eleven momentum components
P, toasetof 528 = 11 + 55 + 462 generators. The ad-
ditional 517 charges characterize the basic M branes. As-
suming that the M algebra is valid for all energies, the
information about the spectrum of states in M theory can
be deduced from the representation theory of the algebra
(1). Of special importance is the notion of Bogomol’nyi-
Prasad-Sommerfield (BPS) states. A BPS state |k) can be
defined as an eigenstate with eigenvalue z, g of the “gener-
alized momentum” generator, Z, glk) = zqglk), such that

)]

detzop = O:
k
i BPS state: {rank z,p =32 — k,32 > k = 1}.

2)
Moreover [5], Eq. (2) implies that the BPS state |k) pre-
serves a fraction v = 3k—2 of supersymmetries.

Without a knowledge of the fundamental dynamics of
M theory, it is difficult to determine which representations
of (1) are primary and which are composite. A point of
view based on the study of solitonic solutions of D = 11
supergravity [10,11] considers as the most elementary ones
the %-BPS states describing the M2 and M5 branes, the
M9 brane and the M-KK6 brane (D = 11 Kaluza-Klein
monopole), as well as the M wave (M0 brane). By con-
sidering superpositions of these D = 11 elementary ob-
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jects (intersecting branes and branes ending on branes) one
can construct 3]‘—2—BPS D = 11 supergravity solitons with
k=16 (v = %) [5,12]. Despite the fact that exotic BPS
states with v = 3]‘—2 > % can also be treated algebraically
as a kind of superposition of branes and antibranes [12,13],
solitonic solutions are known only for BPS states that pre-
serve a fraction v = % of supersymmetries.

In this paper we propose another algebraic scheme
aimed to describe the representations of M algebra, with a
different choice of primary and composite objects. Equa-
tion (2) suggests that the most elementary component
permitting one to construct all BPS states as composites
corresponds to tensorial charges with rank z,g = 1, or
k = 31. We shall call BPS preons the hypothetical objects
carrying these “elementary values” of z,g. Thus, a BPS
preon may be characterized by the following choice of
central charges matrix:

a,f=1,...32, 3)

where A, is a real (Majorana) SO(1, 10) bosonic spinor.
We notice that Eq. (3) can be looked at as an extension of
the Penrose formula (see, e.g., [14]) expressing a massless
D = 4 four-momentum as a bilinear of a Weyl spinor 74

1 ; .
pt= S (e"pm'a  AB=12, 4
to the case of D = 11 generalized momenta (with Abelian
addition law). Following the spirit of the twistor ap-
proach [14—16] we generalize Eq. (3) to the general case
of ;‘—Z—BPS states by

= 37 AL AL,

ZaB = Aa/\,Bv

n =732 —k, N2>k=1,

(&)

with n linearly independent A’s. Thus, the %—BPS state
may be regarded as composed of n = (32 — k) BPS
preons.

Group theory methods often compensate the lack of
knowledge about dynamical mechanisms. At this stage our
aim is modest, and begins by pointing out an interesting

Zaﬁ
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structure of the representation theory of the M algebra
that arises when the tensorial charges are introduced as
bilinears of spinors. Further, to conjecture the dynam-
ics of BPS preons we may follow the considerations in
[17,18] and enlarge the M algebra to the superconfor-
mal one osp(1]|64) [6,19]. In such a dynamical picture
a BPS preon (a fundamental %—BPS state) is described by
a D = 11 supertwistor (A,, ®%, &), with & fermionic, i.e.,
by the fundamental representation of OSp(1|64).

We stress that our method provides a complete algebraic
classification of all BPS states (note also that, although we
consider here the D = 11 case, our approach applies to
any D). In particular, we shall describe in the language
of n BPS preons the special choices of z,g describing
M?2 branes and M5 branes (n = 16), two orthogonal M
branes (n = 24) and the example [13] of an exotic BPS
state with v = %. Because of the lack of D = 11 solutions
corresponding to exotic BPS states, one can conjecture that
branes that can be described in D = 11 spacetime should
have n = 16 in Eq. (5).

(2) Arbitrary BPS states as composites of BPS pre-
ons.—We show now that any +-BPS state |k) can be
characterized by Eq. (5). GL(32,R) is the maximal auto-
morphism group of the algebra (1) [20,21,26]. As the ma-
trix zap = (k|Zoplk) is symmetric and positive-definite,
Zapx®xP = 2532 [(k|x* Q4 |1)]* = 0, it can be diagonal-
ized by a GL(32,R) matrix G,

Zap = G124 G5 . ©6)
Moreover, the diagonal matrix Z;O; can be chosen as

follows:
2\ = diag(1,.".,1,0,.%.,0). 7

Thus, we see that Eq. (6) can be written in the form (5)
provided that

AL =G, i=1,...,.n=32—k. (8)

In the new basis Q¥ defined by Q¥ = (Gfl).ﬁa Qp., the
M algebra (1) diagonalizes on BPS states so that

10,0 1ky = 81k) .
10,09} 1ky = {0, 0O} k) = 0,

r,s =n + 1,...,32. Hence, the set of 32 supercharges
QY = (Qi(o), Qio)) acting on the BPS state |k) splits into

k generators Qio) of supersymmetries preserving the BPS

€))

state (i.e., one can put consistently Q£0)|k> = 0),and n =

32 — k generators QEO) which describe the set of broken
supersymmetries. To summarize, the eigenvalues z,g of
the tensorial charges that characterize a BPS state preserv-
ing k < 32 supersymmetries may be expressed by Eq. (5)
in terms of 32 — k Majorana spin(1, 10) bosonic spinors
Al,. A BPS preon state with z,5 = Ay Ag preserves k =
31 supersymmetries and v = 3]‘—2 BPS states are composed
of n = 32 — k preons.

4452

Equation (5) implies that the tensorial charges are pre-
served under O(n) transformations of the n spinors AL :
Ay = 0"\

jtas

o’o =1,, i=1,...,n. (10)

The SO(n) = SO(32 — k) rotations constitute an internal
symmetry of the %—BPS states. For the %—BPS states
associated with the fundamental M2 and M5 branes, in
particular, SO(n) = SO(16). This group corresponds in
D = 11 to the unitary internal symmetry U(n) in D = 4
that was introduced in the framework of twistor theory for
n-twistor composite systems [15,16]. In our scheme we
see that the dimension n of SO(n) is equal to the number
of broken supersymmetries.

(3) Physical % BPS states and their superpositions.—
The fundamental BPS preons have all the bosonic charges
Pu ©ACT YA, zpy * ACT Ay zyy s @ ACT A
nonvanishing. We show now in our framework that the
M?2 and M5 3-BPS states can be composed out of 16 BPS
preons.

Let us consider the M2 brane, what implies z,,, .., = 0.
Thus, Eq. (5) acquires the form

Zap = Pulap + 2uwilap = S AN, (1D

where, at this stage, we do not fix n. In the rest frame
of a BPS massive state, p, = m(1,0,...,0). As we are
dealing with the M2 brane, but not with the M9 brane, we
shall assume that in this frame z,,, has only spacelike com-
ponents z,, = 8[IM6,{]ZU. In particular, we may choose
the space slice of the M2 world volume in the {12} plane,
Zuy = 5[1u5§]z where z = 2z;5. Using the spin(1,2) ®
spin(8) covariant splitting of D = 11 spinors and I' matri-
ces (see, e.g., [22]),

i )‘Zq .
A, = i | a=1,2, q,9 =1,....,8,
A
(12)
iy, = (1(‘)6 f}m), y,?b = 8.4, Eq. (11) can be written as
M2 : 12 - - - = = = = ==
_ [ (m+ 2)84,40,, 0
Lap ( 0 (m — Z)5“h5;“’,
i i i ib
- z;-;l(%fz?" teats ) (13)
Ay Abp A A,

The matrix z, g has either rank 32 (when m # *z) or rank
16 (when m = *z). Assuming z > 0 we conclude that
the M2 brane BPS state appears when m = z and that
preserves 1/2 of the target supersymmetries. In this case
Eq. (13) implies

E?:]()l;q/\;,p) = 225ab5qp» (14)
3P (AFA,) =0 =S, (A (5)

Equation (14) has a solution only if n = 16. Moreover, as
rank zog = 16 for m = z, we need just 16 BPS preons,
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described by A, € R* ® O(16); from (15) /\;-,“ = 0 fol-
lows. Using the O(16) symmetry [Eq. (5)] we see that in
a special frame the spinors Al, (i = 1,...,16) satisfying
Eqgs. (14) and (15) and describing a M2-brane BPS state
may be written as A(,),

M2 (n=2): A = (Jz—%‘sflr). (16)

To obtain the set of A!, in an arbitrary frame we perform a
Lorentz rotation of (16) by means of a spin(1, 10) matrix

Ve® = (1,9, Vaay) € spin(l, 10), an
a=1,2, qg=1,...,8, g=1,....8,
and we get

M2 AL, = v PN = V2z0,Y8,.  (18)

Note that only one of the two [spin(1,2) ® spin(8)]-
covariant 32 X 16 blocks (cf. [22]) of the spinorial
Lorentz frame matrix (17), v,%?, enters in Eq. (18) [23].
For a M5-brane BPS state corresponding to the vanish-
ing world volume gauge field the central charges matrix is

Zap = Pulap + ZurpwTap ™ = SISALAG . (19)

By considerations analogous to those of the M2-brane case
one finds that the 16 BPS preons needed for such a BPS
state of a M5 brane are associated with

MS5: )\fx = va(ﬁ))\fﬁ) = \/—zva“qé"

aq
.4 [spin(1,5)] 4 [spin(5)],

(20)

where z = m = 5!z;.5 > 0, and v, is the 16 X 32
[spin(1,5) ® spin(5)]-covariant block of the Lorentz frame
matrix v,#). Thus, the M2 and M5 BPS states are de-
scribed by a highly constrained set of D = 11 spinors A/,
[since v,®) in Eq. (18) as well as in Eq. (20) belongs to
spin(1, 10)].

To describe a superposition of M branes preserving v =
5 < 2 supersymmetry one needs n > 16 BPS preons. In
partrcular for the system of two orthogonal M2 branes

a=1,... qg=1,...,

12 - - - - — - — - -
M2 ® M2
__34_______

with equal positive charges z;o = z34 = m/4 in the rest
frame we get

0 =)
0 5., + P 0 .
Zap = m('}’ bYqp qbp (—)ah> — Elzil)‘ix)\f@’
(21)
where P )ab = J(y0 5, — & 7qqup) is the or-

thogonal prOJector, e? =1 yabl’z, yOab . are SO(1,2)

gamma matrices, and yqq,...,yqq are the 8 X 8 SO(8)
Pauli matrices. Thus, rank z,g = 24 and we need 24
BPS preons which can be characterized by (i = 1,..., 16;

i=1,....8,i=1,...,24)

i _ (X 0.
w-(Ue)(#) e

where the /A\; and the X?i are constrained by
21161/\;(1 = m(yngQP + Qﬂi)dth)’
8 ai 3 bi (=)ab (23)
El lAq /\ = m’P qp -

In an arbitrary frame A!, = (va“qﬁéq,vaa;];\zl), where
a1, Uqqy are the spinor frame variables (17).

The i-BPS state (21) as well as many other v =
% < % BPS states are described by solitonic solutions of
the D = 11 supergravity [10]. Our approach allows us
to consider as well the “exotic” BPS states with » > %
They are described by n = 32 — k < 16 BPS preons.
For instance, the massive %-BPS state in [13], with zj, =
—m/2, 72345 = —206780# = +m/5! in the rest frame, is
characterized by

0 0 iyi
B = 4m<0 ?(Jr)_a'b) = 2?:1/\11, B> (24)
qp

(£)ab 1 1234
where now 7P ;j, = 5(70“"55”, * ‘yz”byqp ) are
orthogonal projectors (P + PO =400, 1234 =
yqqu,yp,y,,p = _%3273) Thus, rank Za,g =38 and one
concludes that the BPS state preserves v = 3/4 of super-
symmetry [13]. In an arbitrary frame z,p = 4mvgqg X

’P(+) »Vppg and the 2_BPS state can be described by
8 BPS preons

A= vaaghy. =18, (25)
where the 8 )\;’ are constrained by 3%_ 1)\;”)\[” =

4dm fP( 2 b and v, v4q; are the spinorial Lorentz frame
variables of Eq. (17).

There are no solitonic solutions for the exotic BPS states
known. Moreover, general k-symmetry arguments [24]
and the study of the simplest supersymmetric field theo-
ries [26] indicate that, probably, such solitonic solutions do
not exist in the standard (i.e., unenlarged) D = 11 space-
time. This suggests that only composites of n = 16 BPS
preons can be described in a D = 11 standard spacetime
framework.

(4) BPS preons, enlarged superspaces, and OSp(1|64)
supertwistors.— It seems natural to assume that a dynami-
cal realization of exotic states requires a new geometric
framework, going beyond the standard D = 11 spacetime
[27]. The most straightforward idea is to treat all tensorial
charges as generalized momenta in a large conjugate space
of 528 dimensions. The simplest supersymmetric dynam-
icsin D = 4 superspace— Brink-Schwarz massless super-
particle—can be extended to such a large space by two
different ways of generalizing the mass-shell condition.

(i) The Sp(32)-invariant generalization z,3C#?z,5 = 0
of p? = 0 (cf. [29]), where the Sp(32) metric C is the an-
tisymmetric D = 11 Majorana charge-conjugation matrix.
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(i) The general, less restrictive, GL(32,R)-invariant
condition (see, e.g., [26]) detz,g = 0, characterizing all
15-BPS states with 1 < k < 32.

To introduce a dynamical scheme for the proposed BPS
preons of M algebra one can develop a new spinorial ge-
ometry by doubling the D = 11 Lorenz spinors to intro-
duce a D = 11 twistor Ty = (Ay, %) (A =1,...,64)
satisfying a generalized Penrose incidence equation

w® = xaﬁx\ﬁ, x®P = xBe, (26)
where
xP = xtTOP + yHiTel + yrmsTOB 0 (27)
describes the 528 = 11 + 55 + 462 coordinates dual to
the Py, Zuy, Z,, s generalized momenta. In a super-
symmetric theory, Eq. (26) has to be supplemented by
(cf. [17,18,30])
E=0%,. (28)
Then, T4 = (T4, £) defines a supertwistor, which is the
fundamental representation of the generalized D = 11
conformal superalgebra osp(1]64). In such a framework
the basic geometry is described by the D = 11 super-
twistors (T4, £) which we propose to interpret as BPS
preon phase space coordinates. Indeed, using Egs. (26)
and (5) one obtains a relation (modulo an exterior deriva-
tive) between the canonical Liouville one-forms describing
the symplectic structure in the enlarged spacetime (27)
and the D = 11 twistor space coordinates,

Zapdx®P = S]_ N Apdx®P =237 0¥ dA,, (29)
a relation that can be supersymmetrized [17,18]. For
non-BPS states, for which detz,g # 0, one needs the
maximal number, 32, of BPS preons described by 32 su-
pertwistors T 4 = (AL, 0, £). Using 32 copies of the
Egs. (26) and (28) one can express all enlarged superspace
coordinates (x*#,0%) as composites of spinorial preonic
coordinates as follows:

2P =32 0T, e = 32 s

(30)
If we diminish the number of BPS preons, the geometry
becomes gradually more spinorial and detached from a
spacetime framework. In particular, the most elementary
constituent of M-theory matter in the present approach,
a single BPS preon, is described by the purely spinorial
geometry of a single supertwistor.
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