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We create Bose-Einstein condensates of 3’Rb in a static magnetic trap with a superimposed blue-
detuned 1D optical lattice. By displacing the magnetic trap center we are able to control the condensate
evolution. We observe a change in the frequency of the center-of-mass oscillation in the harmonic
trapping potential, in analogy with an increase in effective mass. For fluid velocities greater than a
local speed of sound, we observe the onset of dissipative processes up to full removal of the superfluid
component. A parallel simulation study visualizes the dynamics of the Bose-Einstein condensate and
accounts for the main features of the observed behavior.
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Bose-Einstein condensates (BEC) in dilute atomic gases
are macroscopic quantum systems which can be manipu-
lated by a variety of experimental techniques [1]. The cur-
rent development of such techniques is opening up a wealth
of possibilities to explore new physics, e.g., in nonlinear
atom optics [2], and to study various aspects of superfluid
behavior in the precisely controllable context of atomic
physics [3].

Atoms confined in a periodic potential share some
properties with systems of electrons in crystals. Effects
known from solid state physics, like Bloch oscillations and
Wannier-Stark ladders, have been observed by exposing
cold atoms to the dipole potential of far detuned optical
lattices [4]. Macroscopic quantum interference has been
observed in an experiment on a BEC confined to the
antinodes of a far detuned optical lattice [S]. Bragg
diffraction from a condensate has been induced in moving
optical lattices [6]. This has been used, e.g., as an
atom-laser outcoupler [7] and as a tool for spectroscopy
of the momentum in BEC’s [8]. Applications of BEC’s in
periodic potentials range from matter-wave transport [9]
to interferometry [5] and quantum computing [10]. The
question of the stability of the BEC during the evolution
in optical potentials is crucial for these applications and
has been addressed in theoretical works [11].

In this Letter we report on some novel aspects of super-
fluidity in BEC’s by studying their center-of-mass oscilla-
tions inside the harmonic potential of a magnetic trap in
the presence of a one-dimensional (1D) optical lattice. We
identify different dynamical regimes by varying the ini-
tial displacement of the BEC from the bottom of the trap.
For small displacements the BEC performs undamped os-
cillations in the harmonic potential and feels the periodic
potential only through a shift in the oscillation frequency.
At larger displacements we observe the onset of dissipative
processes appearing through a damping in the oscillations.
We can describe the experimental results in terms of an in-
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homogeneous superfluid having a density-dependent criti-
cal velocity. In parallel we report numerical studies of the
Gross-Pitaevskii equation (GPE), which capture the main
features of the observed dynamics.

In our experimental setup [12] we now produce BEC’s
of ¥Rb atoms in the (F = 1,mp = —1) state. The funda-
mental frequencies of our loffe-type magnetic trap are
wy =27 X 87 Hz and w, = 27 X 90 Hz along the
axial and radial directions, respectively. The conden-
sates are cigar-shaped with the long axis (the x axis)
oriented horizontally. With a number of atoms N = 4 X
10°, the typical dimensions (Thomas-Fermi radii) are
R, =55 pumand R, =55 pm.

We create a 1D optical lattice by superimposing to the
long axis of the magnetic trap a far detuned, retroreflected
laser beam with wavelength A. The waist of the beam
is 2 orders of magnitude larger than the short condensate
axis, and therefore the resulting dipole potential in the
condensate region has the form V(7) = Vcos?(2mx/A).
With a blue detuning 6§ = 27 X 50 GHz from the D1
line at Ag = 795 nm and an intensity 7 = 1 mW/mm?
in the antinodes of the standing wave, the dipole potential
height of an optical lattice well is Vo/kp = 270 nK [13].
The spontaneous scattering rate in the antinodes is I, =
0.7 Hz at this detuning and intensity.

To prepare the atomic cloud in the ground state of the
combined magnetic trap and optical lattice we first per-
form evaporative cooling in the magnetic trap until we
reach a temperature slightly above the critical tempera-
ture, T = 1.5T.. Then we superimpose the optical lattice
and continue with the evaporation process down to a tem-
perature T = T./2, where the thermal cloud is no longer
observable. We have checked that the time at which we
switch on the optical lattice does affect only the atom num-
ber according to the spontaneous scattering rate, but does
not influence the BEC dynamics as long as the potential
is switched on at a temperature above 7,. It is important
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to note that, for the dipole potential strengths and atom
numbers which are used in the experiments, the modulated
atomic density does not vanish in the antinodes of the lat-
tice but reaches a minimum value which is significantly
different from zero.

Figure 1 shows the density distribution along the x axis,
as obtained by numerical propagation of the 3D GPE in
imaginary time [14]. Here the condensate spans about
250 lattice sites. In the experiment, the density modulation
on the length scale of A/2 cannot be resolved, due to
the limited resolution (= 7 um) of the absorption-imaging
system. The modulation on a short length scale raises
the chemical potential to the value u/kg = 170 nK for
N = 3 X 10° in the combined trap. Instead, in the purely
magnetic trap we have u/kp = 47 nK.

In order to investigate the dynamics of the system we
translate the magnetic trapping potential in the x direction
by a variable distance Ax ranging up to 300 wm by chang-
ing the currents through the coils of the magnetic trap. The
translation takes a few milliseconds, which is short com-
pared to the longitudinal oscillation period 277/ w,. There-
fore, the BEC finds itself out of equilibrium and is subject
to a potential gradient which forces it into motion. The
presence of the magnetic trapping potential ensures that the
atomic cloud maintains its high density (maximum density
Nmax = 1.5 X 10" cm™3). After an evolution time 7., in
the displaced trap, both the magnetic trapping and the opti-
cal lattice are switched off simultaneously and the cloud is
imaged after an additional free expansion of 26.5 ms. The
imaging beam is horizontal and directed perpendicularly to
the long condensate axis. From the absorption image we
deduce the center-of-mass motion and gain information on
the distortion of the BEC.

In the absence of the optical lattice, the center-of-mass
motion of the BEC in the displaced trap is an undamped
oscillation with frequency w, = 27 X 8.7 Hz and ampli-
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FIG. 1. Density distribution of a BEC in a harmonic trap with

a superimposed optical lattice, from a numerical simulation of
the 3D GPE for N = 3 X 10° and V,/kg = 270 nK. The inset
shows an enlargement of the central region of the BEC. The
envelope of the modulated density distribution follows the para-
bolic distribution in the harmonic trap.
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tude Ax, which in the following we refer to as the “free
oscillation.” After switching on the optical lattice we ob-
serve dynamics in different regimes.

For small displacements, Ax = 50 um, the dynamics
of the BEC resembles the free oscillation at the same am-
plitude but with a significant shift in frequency. Figure 2
shows a comparison of free oscillations and oscillations
with superimposed lattice for Ax = (31 * 3) um. For
the lattice potential Vo/kg = 270 nK we find a shifted fre-
quency o™ = 277 X (8.0 = 0.1) Hz. As can be seen from
Fig. 2, this frequency shift is also reproduced in numerical
simulations of the 1D GPE using an explicit time-marching
method [14,15].

The frequency shift can be explained in terms of a renor-
malization of the atomic mass in the band states originating
from the periodic potential. From the data in Fig. 2 we ob-
tain an effective mass m*/m = (w,/w*)* = 1.18 * 0.02.
Different from earlier experiments on cold atoms in an op-
tical lattice under constant acceleration [4], in the present
small-amplitude regime under harmonic forces we are ex-
ploring only the states near the Brillouin zone center. The
above value of m™ refers, therefore, to states near the bot-
tom of the energy band.

The essentially undamped oscillations of the BEC on
the time scale of the experiments in the present small-
amplitude regime is a manifestation of superfluid behavior.
The coherent condensate is being accelerated through band
states as if it were a quasiparticle [16]. Also, for small
displacements we observe only marginal heating effects;
i.e., the small thermal cloud of atoms accompanying the
BEC can be fully accounted for by spontaneous scattering.

However, the BEC enters a regime of dissipative dynam-
ics when we further increase the initial displacement Ax
and hence the velocity of the condensate. In Fig. 3 we re-
port the measured ratio between the first oscillation peak
amplitude and the free-oscillation amplitude as a function
of the trap displacement, together with the values from the
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FIG. 2. Superfluid oscillations of a BEC in the presence of
an optical lattice potential of height V/kz = 270 nK (squares)
and in a purely magnetic trap (triangles), for initial displacement
Ax = (31 = 3) um. The lines give results from a numerical
simulation of the 1D GPE at the experimental parameters.
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FIG. 3. Ratio of the first-peak amplitude of the oscillation
of the ensemble to the free-oscillation amplitude, A;/A, as a
function of initial displacement Ax, for the potential Vo/kp =
270 nK and atom number N = 3 X 10°. Circles: experimental
data; triangles: results from 1D numerical simulation. The inset
shows a full oscillation for a displacement Ax = 60 wm with
(stars) and without (squares) optical lattice. Here lines are fits
to the data.

numerical simulation. At a displacement Ax = 50 um
when the maximum velocity attained by the condensate
is v = 3 mm/s, this ratio suddenly deviates from unity,
indicating the insurgence of dissipation in the condensate
motion. As shown in the inset of Fig. 3, the subsequent
dynamics is a damped oscillation of the center-of-mass at
a greatly reduced frequency. The damping increases by
further increasing the initial displacement, as is seen in the
main body of Fig. 3, this behavior being also displayed by
the simulation data in the same figure.

With the onset of dissipative processes the condensate
shape in the experiment becomes distorted and a much
broader distribution, compatible with a thermal component
appears. A thermal component is not allowed to arise in
the numerical simulation, which is still based on the GPE.
However, the density distribution of the condensate in the
simulation becomes fragmented and its phase is completely
randomized. That is, the condensate in this regime breaks
up into subsystems residing in an essentially independent
manner inside the various wells of the periodic potential.

Superfluidity can be expected to disappear when the ve-
locity of flow is sufficient for the spontaneous emission of
elementary excitations, as is the case for a homogeneous
Bose gas [17]. In a trapped condensate moving at suffi-
ciently high velocities, emission of phonons and other ex-
citations is favored and the gas becomes heated [3,18]. The
essentially 1D dynamics of the present sample implies an
important role for longitudinal phonon excitations in these
processes, with a spectrum of critical velocities because
of the inhomogeneity. In a simplified picture, the opti-
cal lattice can be viewed as a medium with a microscopic
roughness, which leads to a velocity-dependent local com-
pression of the gas moving through the planes of the lattice.
This results in a friction force which damps the motion.

Let us therefore inquire about the relative number of
atoms in the superfluid component of a BEC in a state
of motion at a given velocity v, Ny(v)/N say, with N
being the number of atoms inside the harmonic trap in
the absence of the optical potential. In order to measure
this function and to deduce a maximum critical velocity
VUmax, We have varied the displacement Ax and recorded
the atomic distributions after a fixed evolution time fo, =
40 ms. For low velocities, up to about 2 mm/s, the sample
follows the position of a freely oscillating BEC, the ratio
N,/N being a constant approximately equal to 0.7. This
reduction below unity is merely due to the loss of atoms by
spontaneous scattering of photons from the optical lattice
beams during the preparation of the BEC.

Upon increasing the velocity of the BEC, we observe
a retardation of a part of the cloud, leading to a well
detectable separation from the superfluid component af-
ter free evolution (see inset of Fig. 4). For velocities
v ~ 4 mm/s we observe that only the central part of the
fluid is moving without retardation, leading to a drastically
changed aspect ratio with respect to the “unperturbed”
BEC. The spatial separation from the thermal component
allows a clear demonstration of the superfluid properties
of inhomogeneous Bose-Einstein condensates and a pre-
cise measurement of the critical velocity. The data for
N,(v)/N in Fig. 4 show a dramatic depletion of the num-
ber of atoms in the superfluid component as the velocity
of the fluid increases.

98]

®
0,8+
0,71
0,61
Z 05
Z' 041
0,31
0,21
0,11
0,0 i SRR

0 ' 10 15
Velocity (mm/s)

FIG. 4. The fraction of atoms remaining in the undistorted part
of the BEC, N, /N, as a function of the velocity reached during
the evolution in the periodic potential. The line shows a fit
to the data assuming a 3D parabolic density distribution and
a critical velocity proportional to /n(r). In the inset, density
distributions as obtained from absorption images of the expanded
atomic clouds are represented. Here the solid line shows the
density distribution of an ensemble which propagated in the
optical lattice at a velocity vy.x = 4 mm/s. The superfluid part
A) appears in the position of a BEC evolving in the absence of
the optical lattice (dashed line, rescaled), while the retarded part
of the distribution (B) is distributed over a much broader region.
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To model the breakdown of superfluidity in the inho-
mogeneous density distribution of the trapped BEC in
Fig. 4, we first discuss the position dependence of the
longitudinal sound velocity in the sample. In an inho-
mogeneous system, as already pointed out by Andrews
et al. [19] in discussing sound propagation in a magneti-
cally trapped BEC, one may define a local speed of sound
cy(r). This is given by ¢s(r) = /(n(r)/m) (8 u/5n) [20],
where within the Bogoliubov approximation the stiffness
constant 8 u/8n would be equal to the coupling strength
g. We have evaluated the appropriate stiffness constant
by giving a longitudinal stretching (or squeezing) to our
model system by a relative amount € of order 1% at
fixed transverse profile. We find S u/(ue) = 0.7. Tak-
ing w/kg = 170 nK and 6n = —ne where n is the aver-
age density (n = 0.4 X npe = 6 X 1013 cm™3), we find
Csmax = 5.2 mm/s for the maximum value of the local
sound velocity at the peak of the BEC density. This is in
excellent agreement with the data in Fig. 4, showing that
complete destruction of the superfluid component occurs
at Umax = 5 mm/s.

Assuming, therefore, that the critical velocity v.(r) for
local destruction of the superfluid component in the inho-
mogeneous condensate coincides with the local speed of
sound c,(r), we have v.(r) < /n(r). As observed, super-
fluidity breaks down first in the low-density regions. The
envelope function of the density distribution of the BEC
is an inverted parabola in 3D (see Fig. 1) and hence, by
integration over the high-density region, we get an equa-
tion for the relative number of atoms in the superfluid part
of the BEC for a given velocity v, Ng(v)/N = [5/2 X
(1 — v?*/v2, 0% = 3/2 X (1 — v?/v2,)”?] This ex-
pression implies that about 90% of the atomic probability
density is localized in a region which remains superfluid
up to velocities v = v,y /2. The line in Fig. 4 shows that
the above expression for Ny(v)/N gives a very good ac-
count of the data, the fitted value of the maximum velocity
being vmax = (5.3 = 0.5) mm/s.

In further experiments we have also observed indica-
tions that the dissipation onset occurs at higher velocities
for decreasing V| and that the BEC propagates without dis-
sipation in a regime of very low atom number. We plan to
investigate these behaviors in detail in future work.

In conclusion, we have investigated the dynamics of
BEC’s in a periodically modulated potential, in both ex-
perimental and numerical simulations. By measuring the
effect of the periodic potential on the sloshing-mode os-
cillation inside the harmonic trap we have determined an
average effective mass of the atoms in the condensate. The
combined use of a periodic optical potential with the har-
monic confinement has allowed us to observe novel fea-
tures of superfluidity in an inhomogeneous atomic BEC
and to demonstrate a new technique for measuring a local
density-dependent critical velocity.

The results of this work are of importance for future
experiments using periodic potentials for the manipulation
of Bose-Einstein condensates and for the understanding of
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dissipative processes in coherent matter waves. The pre-
cise control of the parameters promises to be a powerful
tool for a quantitative exploration of novel regimes occur-
ring at different atom numbers or tunnel barrier heights.
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