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Entanglement and Extreme Spin Squeezing
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For any mean value of a Cartesian component of a spin vector we identify the smallest possible
uncertainty in any of the orthogonal components. The corresponding states are optimal for spectroscopy
and atomic clocks. We show that the results for different spin J can be used to identify entanglement
and to quantify the depth of entanglement in systems with many particles. With the procedure developed
in this Letter, collective spin measurements on an ensemble of particles can be used as an experimental
proof of multiparticle entanglement.
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The commutator relation for angular momentum op-
erators leads to Heisenberg’s uncertainty relation for the
Cartesian components

DJx ? DJy $ j�Jz�j�2 . (1)

Without violating Heisenberg’s uncertainty relation, it is
possible to redistribute the uncertainty unevenly between
Jx and Jy , so that a measurement of either Jx or Jy becomes
more precise than the standard quantum limit

p
j�Jz�j�2.

States with this property are called spin squeezed states in
analogy with the squeezed states of a harmonic oscillator.

A two-level atom can be represented as a spin- 1
2 system,

and, in experiments on a large number of atoms N which
all start out in the same initial state and which are all
subject to the same Hamiltonian, one can conveniently
express the collective observables of the gas by means of
an effective spin J � N�2, so that, e.g., the difference in
the number of atoms populating the two internal states is
given by the Jz component. The state with all atoms in
the “spin up” internal state is equivalent to the jJz � J�
eigenstate of the macroscopic spin. If one measures the
x component of the spin of a single atom, it is projected
onto the internal superposition states �j #� 6 j "���

p
2 with

equal probability. The value of the total Jx is given by the
difference in the number of atoms in the two states, and it
fluctuates binomially with a variance J�2, which matches
precisely the equality sign in (1) with DJx � DJy .

The states and the amount of spin squeezing produced by
applying Hamiltonians J2

x and J2
x 2 J2

y to an initial jJz �
J� state were studied [1], and the squeezed states, which
satisfy the equality sign in (1), the so-called minimum-
uncertainty-product states, have been identified [2–4]. In-
teraction of atoms with broadband squeezed light [5,6] is
an experimentally verified means to produce spin squeez-
ing [7]. Spin squeezing based on ideas from quantum
computing was recently suggested [8], and recent ideas for
neutral atom spin squeezing based on quantum nondemo-
lition detection of the atomic spin state [9] and on the col-
lisional interactions between atoms [10,11] give reason to
believe that sizable spin squeezing may be much easier to
achieve than optical squeezing.
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In Ramsey-type spectroscopy on a collection of two-
level atoms, a signal proportional to the length of the mean
collective spin pointing, say, along the z axis is recorded
and the noise is given by the uncertainty of one of the
orthogonal components. Wineland et al. have shown [12]
that the frequency resolution in spectroscopy on N two-
level atoms contains the factor

j �

p
2J DJx

j�Jz�j
, (2)

which is reduced by spin squeezing. In this way, spin
squeezing becomes an important ingredient in high pre-
cision spectroscopy and in atomic clocks, which are at
present limited precisely by the fundamental spin noise
[13]. Furthermore, spin squeezing is an important ingredi-
ent in quantum information, because the ensuing quantum
entanglement leads to possibilities, e.g., for atomic tele-
portation [14].

In the derivation of Eq. (2) it is assumed that no other
sources of noise are present. The states which minimize
the quantity j are obtained in the limit �Jz�, DJx ! 0,
where any other source of noise will, however, deteriorate
the spectroscopic resolution. In practice, the ideal states
for spectroscopy are therefore states which minimize the
noise DJx for a given (not too small) value of �Jz�. In this
Letter we identify this minimum, i.e., we optimize the sig-
nal-to-noise ratio by identifying the states with minimum
quantum noise for a given value of the signal. For photons
a similar analysis has been performed in Ref. [15]. Hav-
ing identified the minimum of DJx we use this informa-
tion to derive an experimental criterion for entanglement.
A measurement of two collective operators for a collection
of atoms produces a sufficient criterion for entanglement
which can even quantify the “depth” of entanglement, i.e.,
the minimum number of particles forming multiparticle en-
tangled states in the sample.

To get a lower limit on DJx as a function of �Jz�, one
can use the inequality �J2

x � 1 �J2
y � 1 �Jz�2 # J�J 1 1�

which, together with Heisenberg’s uncertainty relation (1),
yields the limit
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�DJx�2 $
1
2

∑
J�J 1 1� 2 �Jz�2

2

q
�J�J 1 1� 2 �Jz�2� 2 �Jz�2

∏
. (3)

This does not present a tight minimum for Var�Jx�, but
for large J and �Jz� � J it is close to the actual minimum
found by the numerical approaches discussed below. For
low values of �Jz� it differs by a factor of 2. The precise
analysis of the minimum becomes quite different for inte-
ger spins and for half-integer spins, and we shall deal with
them separately.

For integer spins our calculations show that the state
which minimizes Var�Jx� for a given �Jz� has vanishing
�Jx� and �Jy�, so that it is also a minimum of �J2

x �.
Accordingly, these states can be found by minimizing
m�Jz� 1 �J2

x �, where m is a Lagrange multiplier, ensuring
the value of �Jz�. For J values up to several hundred, it is
straightforward to numerically determine the minimum,
by determining the smallest eigenvalue of the operator
mJz 1 J2

x for a wide range of values of m. By deter-
mining �Jz� and �J2

x � in the corresponding eigenstates,
one finds exactly the minimum value of Var�Jx� � �J2

x �
for the particular value of �Jz�. The results for different
values of J are shown in Fig. 1. For J � 1 it is possible
to diagonalize mJz 1 J2

x analytically, and we get
Var�Jx�min � �1 2

p
1 2 �Jz�2 ��2.

For half-integer spins, it is not true that the state
minimizing �J2

x � also minimizes Var�Jx� at a given value
of �Jz�. The reason is that, for half-integer spins, the
operator J2

x has eigenvalues 1
4 , 9

4 , . . . , and its expectation
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FIG. 1. Maximal squeezing for different values of J. The
curves starting at the origin represent the minimum obtainable
variance as a function of the mean spin. Starting from above, the
curves represent J � 1�2, 1, 3�2, 2, 3, 4, 5, and 10. The dotted
curve for J � 1�2 is the limit identified in Ref. [11]. The solid
curves are obtained by diagonalization of the operator mJz 1
J2

x . The dashed curve represents the position of a bifurcation
in the solution for half-integer spins. To the right of this curve
the diagonalization may be applied. To the left of the curve
the minimum is found by a variational calculation (dash-dotted
curve for J � 3�2).
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value will thus always exceed 1
4 . The variance of Jx ,

however, can come arbitrarily close to zero, if the system
approaches a Jx eigenstate. Consider, for instance, a
J �

1
2 particle, where all (pure) states can be obtained

as a simple rotation of the spin-up state. In this case the
components perpendicular to the mean spin are never
squeezed; their variances are both 1

4 . But if we compute
the variance of Jx and the mean value of Jz , one finds that
they obey the relation, Var�Jx�min � �Jz�2, where both
sides approach zero when the state approaches either of
the two Jx � 6

1
2 eigenstates. In that case, of course, the

mean spin also has a component along the x direction.
The state is spin squeezed in the sense of the relation (1),
but not in the sense where one deals explicitly with a spin
component perpendicular to the mean spin vector.

For large half-integer J it is more difficult to find the
most squeezed states. The reason is that the problem
cannot be formulated as a linear quantum mechanicals
problem like the diagonalization of an operator contain-
ing a Lagrange multiplier term, which we used for integer
spins. To compute a variance, we have to determine the
square of a mean value which is an expression to fourth
order in wave function amplitudes. It is easy, however,
to implement a Monte Carlo variational calculation which
minimizes m�Jz� 1 Var�Jx�, by randomly modifying the
amplitudes of a state vector as long as the variational func-
tional is reduced. Like above, the Lagrange multiplier term
is used to adjust the mean value of Jz , so that for each
value of m the identified state vector minimizes Var�Jx�
for the given value of �Jz�. When applied to larger half-
integer values of J this method shows that large values of
�Jz� are accompanied by vanishing mean values of Jx and
Jy , and the solution thus coincides with the one found by
the diagonalization method. But, for a critical value of
�Jz�, the solution bifurcates, and two states with opposite
nonvanishing mean values of Jx have the smallest variance
(see Fig. 2). These states approach the two Jx � 6

1
2 states

in the limit of small �Jz�. Because of the noise in the
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FIG. 2. Bifurcation in the solution for J � 3�2. The points
represent the mean value of the spin in the maximally squeezed
states. The points are obtained by a Monte Carlo variational
calculation which minimizes m�Jz� 1 Var�Jx�. Above �Jz� �
1.32 there is a unique solution with �Jx� � 0. Below �Jz� �
1.32 the solution bifurcates, and �Jx� approaches 61�2.
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simulation, the Monte Carlo method is not efficient for a
precise determination of the critical point of the bifurcation
for large values of J. Before the bifurcation the state is the
eigenstate corresponding to the lowest eigenvalue of the
operator mJz 1 J2

x , and after the bifurcation the state is a
superposition of the different eigenvectors with amplitudes
on states with higher eigenvalues. We can therefore deter-
mine the position of the bifurcation from the properties of
the eigenvectors, and, for different values of J , 100, we
find that the bifurcation happens in the interval

0.83 ,
�Jz�
J

, 0.88 , (4)

except for the special case J � 1�2 where �Jz� � J at the
bifurcation. If we do not break the 6Jx symmetry the
variance from this point flattens out to the value 1

4 , but, in
either of the states with the broken symmetry, the variance
decreases towards zero when smaller values of �Jz� and
nonvanishing values of �Jx� are considered. The position
of the bifurcation is plotted in Fig. 1. To the right of the
dashed line the minimum may be found by diagonalization.
To the left of the curve the variational approach has to be
applied for half-integer spins.

It is the nonlinearity of the problem that leads to the bi-
furcation and symmetry breaking of the solution. Classi-
cal approximations to many-body quantum problems often
show such bifurcations associated with phase transitions
in the problem, e.g., lasing. It is interesting that a similar
phenomenon appears here, in the study of a single quantum
system in a (very) low-dimensional Hilbert space. We em-
phazise that we are not discussing an extension of quantum
theory to include nonlinear terms, we are simply identify-
ing the quantum states that minimize a variance, and this
is a nonlinear problem.

Since we have identified the maximally squeezed states
as eigenstates of the operator mJz 1 J2

x , even without
having explicit expressions for these eigenstates, we
can devise a method to produce them. This method
works only for integer spin, and for half-integer spin
which are squeezed to values of the mean spin exceeding
the value at the bifurcation (4). The system is first
prepared in the jJz � J� eigenstate, and one switches
on a Hamiltonian H�t� � vJz 1 x�t�J2

x , where x�t�
increases very slowly from the value zero and where
v , 0. If the state of the spin follows this Hamiltonian
adiabatically, it evolves through the minimum energy
eigenstates of the instantaneous H�t�, which is precisely
the family of states identified by the above diagonalization
procedure. The adiabatic process may be difficult to
perform in physical systems of interest, and for practical
purposes it is relevant to point out that the straightforward
application of a Hamiltonian H � J2

x also leads to spin
squeezing [1] and, in the regime with large j�Jz�j, the
squeezing resulting from this Hamiltonian is actually
close to the optimum. The Hamiltonian H � J2

x 2 J2
y ,

also discussed in Ref. [1], leads to similar squeezing for
large j�Jz�j, and it follows the optimum for a larger range
of parameters.

We have identified the minimum variance of Jx given
the value of �Jz�. Any measurement of these two quantities
can be plotted as a point in Fig. 1, and this point must lie
on or above the curve for the relevant J. We note that the
curves depend on J, and in the chosen units, large spins
can be more squeezed than small spins. This implies that
the collective spin variables �J �

P
i

�Ji for several spin-J
particles can be more squeezed than the individual spins
themselves. We will now show that this requires the state
of the spins to be an entangled state. It is already known
[11] that, for spin-1�2 particles, reduction of the parameter
j below unity for the collective spin implies entanglement
of the spins. We generalize this property to arbitrary spins.

A separable (nonentangled) state of N spin-J particles is
defined as a weighted sum of products of density matrices
with positive weights pk [16,17]:

r �
X
k

pkr
�k�
1 ≠ r

�k�
2 . . . ≠ r

�k�
N , (5)

where r
�k�
i is the density matrix of the ith particle in the

kth term of the weighted sum. The variance of Jx in such
a state obeys the inequality

Var�Jx� $
X
k

pk

NX
i�1

�DJ2
x ��k�

i

$
X
k

pk

NX
i�1

JFJ��Jz��k�
i �J� , (6)

where the function FJ �?� is the minimum variance of Jx

divided by J for the spin-J particle, i.e., the curves plotted
in Fig. 1, and �Jz��k�

i is the mean value of Jz of the ith

particle in the kth realization in the sum (5).
As it appears from Fig. 1, all the curves FJ�?� are con-

vex. We can prove this property for integer spins, and
for half-integer spins in the range of large j�Jz�j, by con-
sidering the production of the states by adiabatic passage
from the jJz � J� eigenstate. The positive factor in front
of the J2

x component in the Hamiltonian vJz 1 x�t�J2
x is

gradually increased, and the rate of change of �J2
x � and �Jz�

at any given time are given by Ehrenfest’s theorem:

d
dt

�J2
x � �

1
ih̄

��J2
x , vJz�� ,

d
dt

�Jz� �
1
ih̄

��Jz , x�t�J2
x �� .

(7)

The mean values on the right-hand side should be
evaluated in the maximally spin squeezed state, i.e., they
are not known explicitly. But, we observe that they contain
the same operator, and the ratio between the two rates
of changes is therefore simply 2v�x�t�. This implies
that, along the family of maximally squeezed states, the
relative change of �J2

x � and �Jz�, i.e., the slope of the
4433
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curve FJ�?�, is monotonically increasing [since x�t� is an
increasing function of time and v , 0]. It follows that
the second derivative of the function FJ�?� is positive, i.e.,
the function is convex.

From the convexity, it follows that the functions FJ�?�
obey Jensen’s inequality, which states that any linear com-
bination of FJ�ai�’s with positive coefficients is larger than
or equal to the function FJ evaluated on the linear combi-
nation of the arguments. It therefore follows that, in any
separable state,

Var�Jx� $
X
k

pkNJFJ

µ
1

NJ

NX
i�1

�Jz��k�
i

∂

$ NJFJ

µX
k

pk
1

NJ

NX
i�1

�Jz��k�
i

∂

� NJFJ

µ
�Jz�
NJ

∂
. (8)

This relation is the main result of this paper. In an
experiment with a collection of N spin-J particles, it is
possible to measure the collective Jz and Jx , and to de-
termine their mean value and variance. If the data point
��Jz��NJ, Var�Jx��NJ� lies below the relevant curve in
Fig. 1, the systems are not in a separable state, i.e., they
are experimentally proven to be in an entangled state.

The extent to which the measured data point falls
below the curve in the plot is a measure of the degree of
entanglement. A quantitative measure of entanglement
in a multiparticle system is the number of elements that
must at least have gone together in entangled states. We
define a k-particle entangled state to be a state of N
particles which cannot be decomposed into a convex sum
of products of density matrices with all density matrices
involving less than k particles: at least one of the terms
is a k particle entangled density matrix. If, for example,
N spin– 1

2 particles form N�2 entangled pairs, the degree
of macroscopic spin squeezing of the system is limited by
the inequality (9) with J � 1 and N replaced by N�2.
If the measured macroscopic �Jz� and Var�Jx� also lie
below the corresponding J � 1 curve, the measurement
unambiguously implies that the systems are entangled in
larger than binary ensembles. The size of these ensembles
is a measure of the depth of entanglement, which can
be determined experimentally. This criterion may be
compared to the one used in [18], where the fidelity of
production of maximally entangled N-particle states is
used as proof of N-particle entanglement.

As a final point we demonstrate how our procedure can
be applied to identify substantial multiparticle entangle-
ment in recent theoretical proposals for spin squeezing. In
Ref. [11] it is predicted that appreciable spin squeezing of
atoms can be obtained in a two-component Bose-Einstein
condensate. In the calculation, a reduction of Var�Jx� by a
factor of 1000 is found for a reduction of �Jz� of only 1%
with 105 atoms in the condensate. By using Eq. (3), these
4434
numbers imply a depth of entanglement of 	2 3 104. In
ion traps it has been shown that it is possible to imple-
ment a Hamiltonian J2

x by applying bichromatic light to
all ions in the trap [8]. This Hamiltonian can be used to
create a maximally entangled state of all the ions. If the
decoherence in the trap is such that one cannot produce a
maximally entangled state, a different strategy could be to
apply the light for a short time so that squeezing is pro-
duced. For small times the squeezing obtained from the
Hamiltonian J2

x is close to the optimal curves in Fig. 1,
and our theory identifies a depth of entanglement close to
the total number of ions in the trap. In this way, one could
produce and verify the production of an entangled state of
many ions.

We have considered squeezing and entanglement
related to collective vector operators Jz and Jx . We
emphazise that the collective spin components of a mul-
tiparticle atomic system are readily available by standard
spectroscopic methods, which require no access to the
individual components. Given the large interest in spin
squeezing, a criterion of entanglement based on this prop-
erty is an important tool. Recall, however, that systems
may well be entangled without being spin squeezed: The
spin squeezing measurement provides a sufficient criterion
for the depth of entanglement, not a necessary one.
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