
VOLUME 86, NUMBER 20 P H Y S I C A L R E V I E W L E T T E R S 14 MAY 2001
Hidden-Variable Theorems for Real Experiments
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It has recently been questioned whether the Kochen-Specker theorem is relevant to real experiments,
which by necessity only have finite precision. We give an affirmative answer to this question by showing
how to derive hidden-variable theorems that apply to real experiments, so that noncontextual hidden
variables can indeed be experimentally disproved. The essential point is that for the derivation of hidden-
variable theorems one does not have to know which observables are really measured by the apparatus.
Predictions can be derived for observables that are defined in an entirely operational way.
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In general, quantum mechanics makes only probabilistic
predictions for individual events. The question whether
one can go beyond quantum mechanics in this respect has
been a subject of debate and research since the early days
of the theory. There are famous theorems placing restric-
tions on possible hidden-variable theories reproducing the
results of quantum mechanics. Bell’s theorem [1] excludes
local hidden variables. The Kochen-Specker [2] theorem
excludes noncontextual hidden variables. In local hidden-
variable theories the predetermined results for a given
measurement are independent of which measurements
are performed at spacelike separation. In noncontextual
hidden-variable theories the predetermined results are in-
dependent of any measurements that are performed jointly.

The present work is concerned with the derivation of
hidden-variable theorems that apply to real experiments.
It was motivated by the thought-provoking work of Meyer
[3], who claimed that the Kochen-Specker theorem was
“nullified” for real experiments because of the unavoid-
ably finite measurement precision, i.e., because the ob-
server does not have full control over his experimental
setup. However, our approach is very general and applies
in a much broader context. It allows one to deal with all
possible experimental imperfections, and it is not restricted
to the specific class of noncontextual hidden variables. In
particular, theorems on local hidden variables can be de-
rived in the same way.

Let us begin our discussion with some remarks on ex-
perimental tests of hidden variables in general. Hidden-
variable theorems provide us with predictions made by
certain classes of hidden-variable theories which can be
tested experimentally and which differ from the quantum
mechanical predictions. For local hidden variables, Bell’s
inequalities can be derived without making any reference
to quantum mechanics. Then one can check whether they
are fulfilled by the quantum mechanical predictions, and by
experiment. For noncontextual hidden variables, one can
use the Kochen-Specker argument to derive specific quan-
titative predictions for the results of experiments, which
can then be compared to quantum mechanics and to nature.
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For experimental proposals and Kochen-Specker-type ex-
periments that were performed in this spirit, see [4].

It is sometimes argued that the Kochen-Specker theorem
just makes a conceptual point about the formal structure
of quantum mechanics and that actually performing
experimental tests for noncontextual hidden variables is
unnecessary, since quantum mechanics is a very well tested
theory. Irrespective of this discussion, we feel that the
question whether such tests could be performed in
principle is interesting because it concerns the falsifiabil-
ity of a rather simple and fundamental concept.

In the derivation of hidden-variable theorems frequently
no direct reference to experiments is made, or the ex-
perimental situation is treated in an idealized way. For
example, in the original derivation of the Kochen-Specker
theorem it was just shown that noncontextual hidden
variables are incompatible with quantum mechanics,
without making the experimental predictions of noncon-
textual hidden variables explicit, while in the original
derivation of Bell’s theorem perfect correlations and
perfect detection efficiency were assumed.

If one wants to consider an experimental test for a
certain class of hidden-variable theories, one has to give
up these idealized assumptions and derive hidden-variable
theorems that apply to the true experimental situation. For
local hidden variables, the case of nonperfect correlations
and detection efficiency was analyzed soon after Bell’s
original derivation, starting with the work of Clauser and
Horne [5]. The same kind of analysis is possible for non-
contextual hidden variables.

However, there is one more idealization made in the
usual derivations of hidden-variable theorems which, to
our knowledge, has never been discussed in an explicit
way, namely, the accuracy with which the experimental
setup can be maintained (e.g., how well the Stern-Gerlach
magnets in a spin measurement can be aligned and kept
stable). This question has become particularly important
for the Kochen-Specker theorem in view of recent claims
by Meyer [3] that this theorem is no longer applicable
when the measurements have only finite precision.
© 2001 The American Physical Society 4427
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In its original form, the Kochen-Specker theorem states
that it is impossible to assign values to observables corre-
sponding to all directions on the sphere subject to a con-
straint for triads of orthogonal directions. The observables
under consideration are the squares of the spin components
of a spin-1 particle along the respective direction, and the
constraint is given by the total spin.

Meyer’s claim was based on the fact that it is possible to
assign values compatible with the constraint to all rational
directions on the sphere, which constitute a dense subset
of all directions [6]. He argued that, since measurements
with finite precision cannot discriminate a dense subset
from its closure, this implies that noncontextual hidden
variables cannot be excluded by any real Kochen-Specker-
type experiment. However, he did not construct an explicit
noncontextual hidden-variable model for real experiments
with finite precision.

At first sight, it does not seem possible to refute Meyer’s
claim on the basis of existing theorems, for the following
reason. An essential feature of all hidden-variable theo-
rems known to us is that some observables have to appear
in different experimental contexts: an observable A has
to be measured together with another observable B on a
sample of systems, and also together with a third observ-
able C on another sample of systems from the same source,
where both B and C commute with A, but they do not com-
mute with each other and thus cannot be measured jointly.
Note that even for tests of noncontextuality it is not neces-
sary to perform several incompatible measurements on the
same system, which would of course be impossible [7].

For example, in the original Kochen-Specker situation,
one can only arrive at a contradiction by considering
several triads of directions that have at least some direc-
tions in common. For Kochen-Specker experiments this
implies that, at least for some directions, the observables
corresponding to these directions have to appear in differ-
ent triads. When the finite precision of real experiments is
taken into account, it seems impossible to ascertain that
the same observable is really measured more than once in
different experimental contexts. Thus the usual derivations
of hidden-variable theorems seem to run into problems.

Does this mean that it is impossible in principle to rule
out noncontextuality experimentally? Could even the ex-
perimental results on local hidden variables be in danger
for the same reasons? We are going to show that the an-
swer is “no.” There are predictions of noncontextual hid-
den variables, which can be derived within a framework
that is sufficiently general to apply to real experiments,
and which can therefore also be tested by real experiments
with sufficiently high, but finite, precision.

In order to achieve this, it is important to realize that
predictions for classes of hidden-variable theories can be
derived without reference to quantum mechanics. In such
an approach, the observables playing a role in the hidden-
variable predictions are not defined via the quantum-
mechanical formalism, but in an operational way.
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For concreteness, imagine that an observer wants to per-
form a measurement of the spin square of a spin-1 particle
along a certain direction �n. There will be an experi-
mental procedure for trying to do this as accurately as
possible. We refer to this procedure by saying that he
sets the “control switch” of his apparatus to the position
�n. In all experiments that we discuss only a finite number
of different switch positions is required. By definition dif-
ferent switch positions are clearly distinguishable for the
observer, and the switch position is all he knows about.
Therefore, in an operational sense the measured physical
observable is entirely defined by the switch position. From
the above definition it is clear that the same switch position
can be chosen again and again in the course of an experi-
ment (while of course the system measured will always be
different; cf. [7]).

In general one has to allow for the possibility that the
switch position �n does not uniquely determine the physi-
cal state of the measuring apparatus; i.e., there may be de-
grees of freedom of the apparatus over which the observer
does not have full control but which may influence the re-
sult of any given measurement. In the context of deriving
hidden-variable theorems, this possibility can be accom-
modated in a very simple and general way. Following the
philosophy of deterministic hidden variable theories [8],
there must also be some (in general hidden, i.e., unknown)
variables determining the behavior of the apparatus, and
one has to assume that the result of any measurement will
be determined by the hidden variables of the system and
by those of the apparatus together.

Notice that in such an approach as described in the two
preceding paragraphs it does not matter which observ-
able is “really” measured by the apparatus and to what
precision. One just derives general predictions for the
behavior of system and apparatus together, provided that
certain switch positions are chosen. These predictions de-
pend only on the properties of the class of hidden-variable
theories considered. The question of the correct quantum-
mechanical description of the nonideal measurement
considered arises only when, as a next step, one wants to
obtain the quantum-mechanical predictions for the given
situation.

Following the method described above, we now show
how noncontextual hidden variables can be tested and thus
potentially excluded by real experiments. We consider
the context of the original Kochen-Specker argument, i.e.,
exactly the case considered by Meyer.

In the original Kochen-Specker situation one considers
a spin-1 particle. In the ideal case of perfect precision, the
relevant quantum-mechanical observables are the squares
of the spin components, denoted by Ŝ2

�n for arbitrary direc-
tions �n. For a spin-1 particle one has

Ŝ2
�n1

1 Ŝ2
�n2

1 Ŝ2
�n3

� 2 (1)

for every triad of orthogonal directions � �n1, �n2, �n3�. As the
possible results for every Ŝ2

�ni
are 0 or 1, this implies that in
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the ideal case for every measurement of three orthogonal
spin squares two of the results will be equal to one, and
one of them will be equal to zero.

Let us emphasize that in our approach, in the derivation
of the hidden-variable predictions, the observables are de-
fined operationally by the switch positions, i.e., by the best
effort and knowledge of the experimenter, and cannot be
identified with the quantum-mechanical observables. Of
course, for a specific experiment, there should be some
approximate correspondence in order to ensure that the
quantum-mechanical predictions will be sufficiently close
to the ideal case so that they are still in conflict with the
relevant hidden-variable predictions. In the following the
symbol S2

�n (without the hat) will denote the operational
observable defined by the switch position �n, and the term
direction will be used as a synonym for switch position.

In a deterministic hidden variable theory (cf. [8]) one
assumes that for every individual particle the result of the
measurement of any observable S2

�n is predetermined by
hidden variables. In noncontextual hidden variable theo-
ries it is furthermore assumed that this predetermined re-
sult does not depend on the “context” of the measurement,
i.e., on which other observables are measured together
with S2

�n, but only on the switch position �n and the hidden
variables [9].

In general the result may depend both on the hidden
variables of the system and of the apparatus. Let us denote
the hidden variables of the system by l and those of the
apparatus by m. As explained above, the philosophy of
noncontextual hidden variables implies the existence of a
function S2

�n�l, m� taking values 0 and 1 which describes
the result of a measurement with switch position �n on a
system characterized by l with an apparatus characterized
by m. For fixed l and m this function therefore assigns a
value 0 or 1 to the switch position �n [10].

A Kochen-Specker experiment can now be performed
by testing the validity of Eq. (1) (without hats) for a judi-
ciously chosen set of triads of directions. Therefore the ap-
paratus is required to have three switches where the three
directions of a given triad can be chosen. Because the
switch positions do not correspond to the ideal quantum
mechanical observables the sum of the three results will
not always be equal to 2. Nevertheless a contradiction
between noncontextuality and quantum mechanics can be
obtained in the following way.

From the Kochen-Specker theorem it follows that there
are finite sets of triads for which no value assignment
consistent with Eq. (1) (again without the hats) is possi-
ble [2,11]. Let us choose such a Kochen-Specker set of
triads

�� �n1, �n2, �n3�, � �n1, �n4, �n5�, . . . , � . (2)

Let us emphasize that at least some of the switch positions
�ni have to appear in several of the triads; clearly otherwise
there could be no inconsistency. Let us denote the number
of triads in the Kochen-Specker set (2) by N . The set is
constructed in such a way that for any fixed values of l

and m the equation

S2
�ni

�l, m� 1 S2
�nj

�l, m� 1 S2
�nk

�l, m� � 2 (3)

must be violated for at least one out of the N triads
� �ni , �nj , �nk�.

Suppose that one can establish experimentally that for
all triads in the Kochen-Specker set the sum of the results is
equal to 2 in a fraction greater than 1 2 e of all cases. For
the hidden variables this implies that Eq. (3) must hold for
a fraction 1 2 e of all �l, m�, for all triads in the set. But
for sufficiently small e this implies that there would have to
be pairs �l, m�, for which Eq. (3) holds for all triads in the
set, which is impossible according to the Kochen-Specker
argument.

To determine the required value for e, it is convenient
to use a set-theoretic language. Let us denote the set of all
pairs of hidden variables �l, m� by L. Furthermore, let us
denote the subset of hidden variables for which the sum of
spin squares is equal to 2 for the kth triad by Lk . The value
of e has to be sufficiently small such that the intersection
of all the Lk cannot be empty. If we define the measure
(i.e., the size in terms of probability) of L to be 1, then
according to our assumptions all the Lk have measures
larger than 1 2 e, which implies that the measure of the
intersection of all the Lk is larger than 1 2 Ne. This
follows from the fact that the complement of each Lk is
smaller than e, such that the size of the union of these
complements, which is the complement of the intersection
of all the Lk , cannot be larger than Ne.

Thus noncontextuality is experimentally disproved as
soon as e is smaller than 1�N , because then there would
have to be hidden variables which lead to a sum of spin
squares equal to 2 for all the triads, which is impossible
because of the structure of the Kochen-Specker set. Note
that e describes all the imperfections of a real experiment
including finite measurement precision but also, e.g., im-
perfect state preparation and nonunit detection efficiency.
The value of N and therefore the bound on e depends on
the particular Kochen-Specker set used [2,11].

As noted above, an inevitable requirement for the
contradiction to be obtained is the fact that the function
S2

�n1
�l, m� or, in general, functions corresponding to at

least some switch positions appear in more than one out
of the N triads. This appearance of the same function in
different lines of the mathematical proof, corresponding
to different experimental contexts, is possible in spite of
finite experimental precision only because we defined our
observables operationally via the switch positions.

We have shown how noncontextual hidden-variable the-
ories can be disproved by real experiments. This shows
that Meyer’s coloring of a dense subset of the sphere
cannot be used to construct noncontextual hidden-variable
theories according to the above definition. The values as-
signed to specific switch positions would have to depend
on the context, i.e., on the other switch positions chosen
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jointly by the experimenter. This form of contextuality
is a feature of existing explicit models based on Meyer’s
idea [10]. In view of our results, we would assert that
the Kochen-Specker theorem is not nullified by finite mea-
surement precision. Let us note that arguments in favor of
this conclusion were given in [12,13]. Our suggestion how
to perform a Kochen-Specker experiment was inspired by
some of Mermin’s remarks in [12].

Let us emphasize that using the method of the present
paper one can also show that local hidden variables
can be disproved in real experiments, e.g., using the
Greenberger-Horne-Zeilinger (GHZ) [14] form of Bell’s
theorem which is also based on sets of propositions
that cannot be consistently satisfied by a class of hid-
den-variable theories (local, in this case). Inequalities
corresponding to our bound on e can be derived and
compared to the experimental data [15]. Thus our work
confirms the fact that fundamental concepts about the
world can indeed be put to experimental test.

When this work was completed, we learned from
J.-A. Larsson that he has come to similar conclusions
using a somewhat related approach [16]. C. S. thanks
L. Hardy for a useful discussion. This work has been
supported by the Austrian Science Foundation (FWF),
Projects No. S6504 and No. F1506, and by the QIPC
Program of the European Union.
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1797 (1998); C. Simon, M. Żukowski, H. Weinfurter, and
A. Zeilinger, Phys. Rev. Lett. 85, 1783 (2000); M. Michler,
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