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Simultaneous Minimum-Uncertainty Measurement
of Discrete-Valued Complementary Observables
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We have made the first experimental demonstration of the simultaneous minimum uncertainty product
between two complementary observables for a two-state system (a qubit). A partially entangled two-
photon state, where each of the photons carries (partial) information of the initial state, was used to
perform such a measurement.
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Complementarity and the associated uncertainty rela-
tions play a key role in quantum theory. Uncertainty can
be quantified in several ways, e.g., in terms of entropy [1],
variance [2–5], or other quadratic functions of measure-
ment probabilities [6,7]. However, what is usually meant
by “uncertainty” is the state’s inherent indeterminism with
respect to any two complementary observables [7,8]. A
lower bound for this inherent indeterminism is given by
the ordinary Schrödinger-Robertson uncertainty relation
[2,3], which is based on the variances obtained from a
sharp measurement of one of the observables on a par-
ticular ensemble, and a sharp measurement of the comple-
mentary observable on another, but identically prepared
ensemble [9].

However, if one wishes to determine the values of two
complementary operators on every single member of an
ensemble of identically prepared particles, e.g., the value
of the spin in both the x and the y directions of a single
particle, then additional complications arise. Should one
measure the spin x component by making a sharp measure-
ment, then a subsequent measurement of the y component
will yield a completely random outcome. Consequently,
if we want some correlation between the outcome of the
spin y measurement and the preparation of the particle, the
measurement of the spin x component must not be sharp.

The first to address this question were Arthurs and Kelly
[10,11] who studied canonical observables, such as posi-
tion and momentum. The objective was to find a minimum
uncertainty relation for the observables based on the mea-
surement outcomes of both observables on every member
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of the ensemble. However, in a simultaneous measurement
one has two conflicting objectives: The measurement
variances should be minimized while the correlations
between the measurement outcomes and the preparation
of the ensemble should be maximized. There is no unique
way of doing this. Arthurs and Kelly added an additional
requirement, namely, that the expectation values of the
two (unsharp) measurements should equal the expectation
values of the corresponding sharp measurements on any
ensemble of identically prepared particles. With this
additional requirement Arthurs and Kelly found an un-
certainty relation for canonical observables [10] equal in
form to, but with a minimum product of the variances 4
times greater than, the Schrödinger-Robertson relation.
They also found that in order to achieve this lower bound,
a priori knowledge about the preparation of the ensemble
was needed to adjust the relative sharpnesses of the two
measurements. (The sharper one measurement is made,
the more unsharp the other must become.) To the best of
our knowledge, Arthurs and Kelly’s relation has not been
tested experimentally.

In an earlier work we have derived a similar simulta-
neous uncertainty relation for two-state systems, i.e., for
two noncanonical observables [5]. Any pure state in the
associated Hilbert space can be represented as a point
on the Bloch sphere. Suppose we want to measure two
complementary observables Â and B̂ and that the Bloch
sphere is oriented so that Â’s and B̂’s respective eigen-
states jA1�, jA2� and jB1� � �jA1� 1 jA2���

p
2, jB2� �

�jA1� 2 jA2���
p

2 lie equidistantly around the equator;
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see Fig. 1. Also suppose that the corresponding eigenval-
ues are 6A and 6B. It is easy to show that of all the states
lying on any specific “longitude” on the Bloch sphere, the
state defined by the point where the longitude crosses the
equator will have the smallest uncertainty product between
Â and B̂. Hence, we restrict our attention to the equatorial
states that all have the general form

jc� �
p

wA1 jA1� 6
p

wA2 jA2� . (1)

The positive, real numbers wA1 and wA2 � 1 2 wA1 are
the probabilities of obtaining the results A and 2A if we
make a sharp Â measurement on the state.

Hermitian operators with discrete finite spectra cannot
be canonical, i.e., have a commutator of the form iC,
where C is a real number. Therefore, their minimum un-
certainty product is state dependent and not fixed [2–4].
However, for any state on the equator (that is, for any value
0 # wA1 # 1), there exists a combination of simultaneous
unsharp Â and B̂ measurements that reaches the minimum
variance product dictated by the appropriate simultaneous
uncertainty relation [4,5]. It is our objective in this paper
to find and make these measurements.

Let us first show that there is no von Neumann mea-
surement that will give us simultaneous knowledge about
Â and B̂ and still fulfill our “correct expectation value” re-
quirement. Consider such a measurement of an observable
D̂ fi Â, B̂ in the space. The measurement is characterized
by an axis through the origin of the Bloch sphere, cross-
ing the sphere shell at points D and 2D. However, all
states in a plane normal to the D axis will give the same
measurement probability distributions. In particular, this
holds for the two states defined by the crossing points q
and 2q between the plane and the equator in spite of the
fact that they have different values of �Â�, �B̂�, or both.
This makes it impossible to fulfill the correct expectation
value requirement, so we must rule out any von Neumann
measurements and instead look at positive operator valued
measurements, POVMs.

To implement a POVM, we need to enlarge our state
space. A sufficient way in our case is to introduce an an-
cillary two-state (probe) particle (the particle whose char-
acteristics we wish to measure is called the object). In
order to extract any information about the object from the

FIG. 1. The Bloch sphere associated with jc�, Â, and B̂.
4424
probe, we must entangle the two particles. We assume
that the (unitary) entanglement interaction affects only the
probe’s state jm�, viz.,

ÛjA1� ≠ jm� � jA1� ≠ jm1� ,

ÛjA2� ≠ jm� � jA2� ≠ jm2� ,
(2)

which, for the initial state jc�, results in the state

jce� �
p

wA1 jA1� ≠ jm1� 6
p

wA2 jA2� ≠ jm2� . (3)

A measure of the entanglement of jce� is c � j�m1 jm2�j,
where c � 0 (c � 1) signifies perfect (no) entanglement.

Suppose we decide to infer knowledge about B̂ from
a direct measurement on the object particle and infer in-
formation about Â (of the object) from the probe particle.
Three problems arise: how to ensure that the inferred (and
therefore unsharply) measured mean values equal the true
(sharp) means, how to chose basis to measure the probe
state, and how to optimally choose the entanglement pa-
rameter c?

All questions were addressed and answered in [5].
Here we recapitulate only the main conclusions. A sharp
measurement of B̂ on the object particle in state (3) will
yield either of two outcomes B or 2B with probabilities
w0

B1 and w0
B2 that will in general not equal wB1 �

j�c jB1�j2 � 1�2 6
p

wA1wA2 and wB2 � j�c jB2�j2 �
1 2 wB1. However, if we associate the measurement
outcomes with the rescaled eigenvalues 6B�c, then the
expectation values of a sharp rescaled B̂ measurement on
object particle in state jce� and a sharp B̂ measurement
on jc� become equal [for any state of the form (3)]. The
former measurement is an inferred and unsharp estimation
of the latter.

Let us now consider the indirect measurement of Â.
Projecting the probe state on either of the projectors
jm1� �m1j or jm2� �m2j, we can get the probabilities wA1

or wA2. However, it is not possible to obtain both wA1

and wA2 exactly by any fixed measurement on the probe
state because of the nonorthogonality of jm1� and jm2� (if
c fi 0). The probabilities will be optimally estimated by
using an orthogonal basis derived in [5]. It can be shown
that the corresponding von Neumann measurement basis
vectors jM1� and jM2� then form equal angles g with
the vectors jm1� and jm2�, respectively (see Fig. 2). The
probabilities w0

A1 and w0
A2 of obtaining the results M1

and M2 are not equal to wA1 and wA2 (unless c � 0).
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FIG. 2. The probe measurement basis.
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However, if we associate the respective probe particle
measurement outcomes with the rescaled eigenvalues
6A�

p
1 2 c2, the inferred (unsharp) measurement of Â

through jce� will give the true mean of Â measured on
any state jc� irrespective of the value of wA1.

Now, how do we obtain a minimum uncertainty prod-
uct for a simultaneous Â and B̂ measurement? For a given
state jc� the only adjustable parameter in jce� is the de-
gree of entanglement c. Thus the simultaneous uncertainty
product must be minimized with respect to c for a given
wA1, i.e., jc� must be known a priori.

Let dÂ � ��DÂ2��1�2�A and dB̂ � ��DB̂2��1�2�B be the
normalized uncertainties of Â and B̂ when jc� is mea-
sured. The normalized uncertainties, inferred from simul-
taneous measurements on jce�, are denoted dÂ0 and dB̂0.
A straightforward calculation [5] gives

dÂ0 �
q

�dÂ�2 1 c2��1 2 c2� , (4)

and

dB̂0 �
q

�dB̂�2 1 �1 2 c2��c2 . (5)

The product of (4) and (5) reaches the minimum

�dÂ0dB̂0�min � 1 1 dÂdB̂, for c �
q

dÂ��dÂ 1 dB̂� .
(6)

These formulas are identical to (53) and (54) in [5] but are
expressed in different quantities.

Now we test the simultaneous uncertainty relation with
photon states. Unfortunately, state-of-the-art technology
does not allow us to perform the unitary interaction (2)
on single photons. Therefore, we start directly with state
(3) without introducing the independent object and probe
states first. This is not as serious a flaw as it may appear. If
we had started with jc�, then we would have had to make
sure that the state after the entanglement was indeed jce�,
by measuring, e.g., wA1, c and the relative phase angle be-
tween the state’s two terms (which, if the entangling step
works alright, is akin to measuring wB1). Hence, there is
actually little point in using a two-step procedure to arrive
at jce� since the parameters wA1 and wB1 (uniquely defin-
ing jc�) can, and must, be measured from jce� anyhow.

Experimentally, state (3) was created via noncollinear
spontaneous parametric down-conversion with type II
phase matching. Our source was similar to that described
in [12], but we used a pulsed source to reduce the random
coincidence count rate. With a specific choice of the
relative phase between the vertically j"� and horizontally
j!� polarized photons the state after the crystal is ideally
in a mixture of the vacuum state, one photon states (that
both are eliminated by postselection through detector
correlation), and the state

jci� � �j"� ≠ j!� 2 j!� ≠ j"���
p

2 . (7)

If we choose the leftmost ket in the product to represent
the object and the rightmost to represent the probe, the
state becomes exactly state (3) with wA1 � wA2 �

1
2 and
c � 0. To adjust the state for a minimum simultaneous
uncertainty product measurement, a partial polarizer was
inserted in the object path, rotated at an angle a with
respect to the horizontal plane. The partial polarizer
consisted of a stack of N glass plates held at the Brewster
angle with respect to the object photon’s propagation axis.
The amplitude transmittivities of the partial polarizer
were tp � 1 and ts � t, where t was determined by the
number of plates N . (The indices p and s refer to the
linear polarization states with the respect of the partial
polarizer.) Assume that we insert the partial polar-
izer so that it tends to polarize the object photon
vertically (corresponding to jA1�). In this case c
will remain zero, but wA1 of the postselected states will
become larger than wA2. If, on the other hand, we make
the polarizer perfect and insert it at a � p�4, then c will
become unity but wA1 and wA2 remain equal. Hence, the
degree of entanglement between the object and probe, as
well as the a priori path probabilities, could be varied by
changing N and a. Unfortunately, with this device, it is
not possible to vary c and wA1 independently. That is, for
a given number of plates, only two choices of a give the
combination of c and wA1 that makes the simultaneous
uncertainty product attain its lowest bound.

The experimental setup is shown in Fig. 3. A 0.5 mm
long beta-barium borate (BBO) crystal was used to
generate noncollinear frequency degenerate photon pairs.
The pump was 100 mW average power second harmonic
generation from the initial 2 W average power Ti-
sapphire pulsed radiation. The experimental parameters
were 2 ps pulse duration, 80 MHz repetition rate, and
390 nm wavelength of the second harmonic. The state
detection was accomplished by two EG&G single photon
detectors (SPC1 and SPC2) with around 60% quantum
efficiency and a coincidence counter. The photon pair was
selected by two 1 mm diameter irises placed 1 m from the
crystal, selecting pairs from a 5± top angle emission cone.
Identical 10 nm bandpass filters (F1 and F2) centered
at l � 780 nm were placed in front of the detectors to
select frequency degenerate photon pairs. This resulted
in 10 kHz single count events and around 100 Hz of
coincidence counts. Two polarizers (P1 and P2) were used
to select linearly polarized photons. Polarization rotation
of the beams was accomplished by two l�2 plates placed
before the polarizers. Because the uncertainty product is
symmetrical in wA1 with respect to the wA1 � 0.5 point,

FIG. 3. A schematic illustration of the experimental setup.
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FIG. 4. Results of a simultaneous minimum uncertainty prod-
uct measurement (circles). The theoretical prediction (6) is
shown by the solid line. The maximum uncertainty product
(dashed line) and the Schrödinger-Robertson uncertainty rela-
tion (dotted line) are given as references.

only the 0.5 # wA1 # 1 probability range was used for
the minimum uncertainty product measurements. Three
different numbers of glass plates (N � 7, 8, and 10) were
used to adjust the state jci�. This choice gave more or
less an equally spaced set of probabilities wA1. Thus six
combinations of N and a should give the minimum uncer-
tainty product. For a given number of glass plates held at
the theoretically computed value of a the four coincidence
probabilities with respect to the probe measurement basis
orientation were measured, from which the values of c
and wA1 at this particular setting were derived. This
calibration curve allowed us to adjust the partial polarizer
rotation angle a and thus the values of c and wA1 rather
precisely in order to attain the minimum uncertainty
product bound.

To measure the B̂ outcome probabilities the photon
counter, a l�2 plate, and a polarizer, were used to project
the object state onto the jB1� and jB2� eigenstates. (These
are the states polarized at 45± and 135± from the horizontal
direction.) The dB̂0 uncertainty was calculated using the
measured probabilities with subsequent rescaling due to
the measured entanglement parameter c. The dÂ0 uncer-
tainty was measured by orienting the probe measurement
basis to coincide with jM1� and jM2� (see Fig. 2) which
are also governed by the entanglement parameter c. After
subsequent rescaling, the uncertainty product was calcu-
lated and plotted in Fig. 4, which is the main result of this
paper. The six circles represent the measured uncertainty
product. The result is in relatively good agreement with
the theory (6) shown by the solid line. One source of
errors in the experimentally obtained values originates
from the stochastic nature of photocounting events. An
estimate of the errors has been done taking into account
the errors of the eight measured coincidence coefficient
necessary to calculate the uncertainty product. This gives
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an estimated root mean squared error of 10% of the mean
value of the measured uncertainty product. This error is
represented by the error bars in Fig. 4.

The degradation of the purity of state (3) results in a
systematic error, increasing the uncertainty product. The
main reasons for the degradation are the group velocity
dispersion in BBO crystals, depolarization effects in our
homemade partial polarizer, as well as the light scatter-
ing from the numerous optical elements. The degradation
affects the Â measurement to a lesser extent than the B̂
measurement as the latter is a relative phase (first order
interference) measurement. This results in higher discrep-
ancy between the theory and experiment in the vicinity of
the wA1 � 0.5 point.

The maximum uncertainty product was calculated using
the assumption that both the Â and B̂ measurement’s two
respective outcomes had equal probabilities (that is, as if
the initial object state lie at the north or south pole of
the Bloch sphere), and using the same rescaling as for
the minimum uncertainty product calculation. Then the
maximum uncertainty product is given by

�dÂ0dB̂0�max � �c
p

1 2 c2 �21 (8)

and is shown as a reference by the dashed line.
In conclusion we have experimentally verified, to the

best of our knowledge for the first time, a simultaneous
uncertainty relation, namely, that between discrete non-
canonical observables.
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