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General amplitude equations are derived for reaction-diffusion systems near the soft onset of birhyth-
micity described by a supercritical pitchfork-Hopf bifurcation. Using these equations and applying
singular perturbation theory, we show that stable autonomous pacemakers represent a generic kind of
spatiotemporal patterns in such systems. This is verified by numerical simulations, which also show
the existence of breathing and swinging pacemaker solutions. The drift of self-organized pacemakers in
media with spatial parameter gradients is analytically and numerically investigated.
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Oscillatory reaction-diffusion systems, such as the
Belousov-Zhabotinsky (BZ) chemical reaction, exhibit a
rich variety of nonlinear wave patterns. The first complex
pattern discovered in this reaction was the target pattern,
where concentric waves were emitted by a pacemaker
representing a periodic wave source [1]. Subsequently,
similar target structures have been observed in many other
chemical, physical, and biological systems [2–5]. A
simple theoretical explanation of target patterns in oscilla-
tory chemical systems is that their pacemakers are created
by impurities which increase the local oscillation fre-
quency in the medium [6]. Most of the target patterns
seen in the BZ reaction are caused by small local inho-
mogeneities, such as dust particles. A general question
is whether self-organized target patterns, representing
an intrinsic dynamical property, are also possible in
reaction-diffusion systems. Examples of stable au-
tonomous pacemakers with localized or extended wave
patterns are indeed known for several reaction-diffusion
models [7–16].

The aim of the present Letter is to show that stable
autonomous pacemakers with extended wave patterns
represent a generic pattern-forming object in oscillatory
reaction-diffusion systems near the onset of birhythmicity.
Birhythmicity, the coexistence of two stable limit cycles
corresponding to uniform oscillations with different
frequencies, is possible in various systems [17–20], in-
cluding glycolytic oscillations [21] and the photosensitive
BZ reaction [22]. Here, we derive two coupled amplitude
equations yielding the normal form of such a dynamical
system near a supercritical pitchfork-Hopf bifurcation
which leads to birhythmicity. Using singular perturbation
theory, an analytical solution for autonomous pacemak-
ers is then constructed and its stability is numerically
confirmed. In addition, target patterns with breathing or
swinging pacemakers are observed. Finally, we show that
autonomous pacemakers can drift under the influence of a
parameter gradient and determine the drift velocity.

The derivation of normal forms for various kinds of
reaction-diffusion systems has recently been discussed by
one of the authors [23,24]. Here, we focus our attention
0031-9007�01�86(19)�4406(4)$15.00
on systems near a supercritical pitchfork-Hopf bifurcation,
where a stationary uniform state becomes unstable due to
the simultaneous growth of a real uniform eigenmode and
a pair of complex conjugate uniform eigenmodes. In the
vicinity of this bifurcation, two stable limit cycles coexist,
so that birhythmicity is found. At least three species are
needed to realize this bifurcation.

Using the approach described in [23], we have derived
the normal form of this bifurcation for a general reaction-
diffusion system. The rescaled normal form is given by
[25,26]

≠tA � A 2 �1 1 ia� jAj2A 1 �1 1 ib�=2A

1 �1 2 ie�Az , (1a)

t≠tz � s 2 gjAj2 1 z 2 nz3 1 l2=2z . (1b)

The system (1) represents a complex Ginzburg-Landau
equation (CGLE) for a supercritical Hopf bifurcation (1a)
which is coupled to an equation describing an imperfect
pitchfork bifurcation (1b). Here A is the complex oscil-
lation amplitude and z is the amplitude of the slow real
mode. The coefficients t and l, respectively, are the ra-
tios of the characteristic time and length scales of the real
and the oscillatory modes. The parameter e specifies the
frequency shift of the oscillatory mode due to coupling to
the real mode, g characterizes the strength of the feedback
from the oscillatory to the real mode, and n determines
the nonlinear saturation of the real mode. For the uniform
stationary state, Eq. (1b) describes a supercritical pitch-
fork bifurcation for s � 0, whereas s fi 0 corresponds to
an imperfect pitchfork (or “cusp” [27]) bifurcation. Only
positive parameters g, n, and s and the case b 2 a . 0
will be considered in this Letter. We assume that uni-
form oscillations are modulationally stable in this system,
i.e., the Benjamin-Feir-Newell condition 1 1 ab . 0 is
satisfied.

It can be seen that Eqs. (1) have solutions correspond-
ing to two uniform stable limit-cycle oscillations with fre-
quencies V1 and V3 and to an unstable limit cycle with
frequency V2. The frequencies are given by V1,2,3 �
a 1 �a 1 e�z1,2,3 where z1,2,3 are the real roots of the
© 2001 The American Physical Society
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equation nz3 2 �1 2 g�z 1 g � s. When a 1 e , 0
(which is the case that we chose in the simulations), the
smallest root z1 corresponds to the most rapid oscillations,
i.e., V3 , V2 , V1. When n ¿ 1, the three frequencies
are only slightly different.

In addition to these uniform oscillations, the system de-
scribed by Eqs. (1) may have stable nonuniform solutions
representing self-organized pacemakers. To create a pace-
maker, a sufficiently strong local perturbation should be
applied to the state comprised of uniform oscillations with
the lower frequency V3, so that a small core region is
formed where oscillations have a higher frequency. Inside
this region, the variable z is close to z1, whereas outside, it
is near to z3. The core starts to send out waves and hence a
pacemaker is created. The core expands (g . s is a nec-
essary condition for this, otherwise it will contract) and
the frequency and the wave number of the emitted waves
slowly increase at the same time. In turn, this leads to a de-
crease of the oscillation amplitude of emitted waves. This
amplitude controls the propagation velocity of the front,
representing the boundary of the expanding core. When
a critical wave number is reached, the front velocity be-
comes zero and a stationary pacemaker is formed.

We have constructed an analytical solution for sta-
tionary pacemakers in the one-dimensional system (1).
The phase f and amplitude r are introduced by A �
r exp�2i�V3t 1 f��. Then r is adiabatically elimi-
nated using r2 � 1 1 z 2 �=f�2 1 b=2f. The phase
equation approximation [28] is valid for smooth phase
perturbations. Assuming that the characteristic length
scale of the real mode, determining the front width, is
much shorter than the characteristic length scale of the
oscillatory subsystem (i.e., l ø 1), we apply singular
perturbation theory to this problem. The derivation will
be published separately [29] and only selected results are
reported in this Letter.

The velocity of the front V (of the expanding core)
depends on the wave number k and is given by

V �k� � 3
l

t

r
n

2
ez2�k� , (2)

where ez2�k� is the middle root of the cubic equation
nz3 2 �1 2 g 1 ga�z 1 g�1 1 az3 2 k2� � s, with
a � b�a 1 e���1 1 ab�. On the other hand, if the
core radius R is known, the wave number k of emitted
waves can be analytically found if the condition lk ø 1
is satisfied (cf. [8]). The inverted dependence R�k� and
the velocity V �k� are displayed in Fig. 1(a).

For stationary pacemakers, the front velocity V van-
ishes. This determines the wave number k0 of a station-
ary pacemaker and thus allows us to find its core radius
R0. Analytical solutions for these key properties have been
constructed. We find that

k0 �
q

1 2 s�g 1 az3 , (3)
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FIG. 1. (a) Dependence of the front velocity V on the wave
number k of emitted waves (solid line) and dependence of k on
the core radius R (dashed line, plotted as R vs k). (b) The wave
number k0 of the waves emitted by a stationary pacemaker (solid
line) and the corresponding radius R0 (dashed line) as functions
of the coupling coefficient g. The parameters are a � 1.4,
b � 2.3, e � 22.1, l � 1, t � 5, n � 20, g � 0.13, and
s � 0.1.

R0 �
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1CA , (4)

where k2
max � �a 1 e� �z1 2 z3���b 2 a�. The fre-

quency V0 of a stationary pacemaker is V0 � V3 1

�b 2 a�k2
0 . The wave number k0 and the radius R0 of

a stationary pacemaker are shown as functions of the
coupling coefficient g in Fig. 1(b).

Examining the constructed solutions, we note that
generally V3 , V0 , V1. The frequency V0 of a sta-
tionary pacemaker approaches the frequency V1 of rapid
uniform oscillations, when the core radius R0 ! ` (and
k0 ! kmax). On the other hand, when the core is small, k0
is small and the frequency V0 is close to V3. Stationary
pacemakers exist inside an interval of the coupling inten-
sity g [see Fig. 1(b)]. Our approximate analysis based on
singular perturbation theory is valid only when the core is
not too small, i.e., R0 ¿ l.

Some conclusions about the stability of stationary pace-
makers can already be drawn from Fig. 1(a). Suppose the
radius R has increased above the stationary radius R0. This
leads to an increase of the wave number k of emitted waves
which, in turn, will make the front velocity V negative.
Therefore the front will retreat, decreasing the radius R
back to its stationary value. This argument is, however,
applicable only when the characteristic time scale of the
core evolution is much longer than the time needed for the
wave pattern to adjust to its changes, i.e., when t ¿ 1.
Generally, the stability of stationary pacemakers should be
numerically investigated.

The system described by Eqs. (1) was integrated with an
explicit Euler scheme where the Laplacian operator was
discretized with a nearest-neighbor approximation [30].
No-flux boundary conditions were used. Figure 2(a) dis-
plays the evolution of a stationary pacemaker from a small
initial perturbation of the real mode z. In the first stage,
the core grows with approximately constant speed. Later,
the growth is terminated and a stationary object is formed.
Figure 2(b) displays the creation and emission of waves in
4407
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FIG. 2. Development of a stable stationary pacemaker (a),(b)
and its asymptotic profile (c). (a) shows the evolution of the
real mode amplitude z after an initial perturbation. (b) displays
the evolution of ReA. In (c) the spatial distributions of the vari-
ables z (solid line), ReA (dotted line), and jAj (dashed line)
are presented. The system size is L � 100 and the time inter-
val is 0 , t , 500; the same parameters as in Fig. 1. In our
gray-scale plots the black and white levels always correspond to
the minimum and the maximum values of the plotted variable,
respectively. In the space-time plots, time runs along the hori-
zontal axis.

the oscillatory subsystem. The profile of the asymptotic
stable stationary pacemaker is shown in Fig. 2(c).

Pacemakers are stable for sufficiently large t. When
t is decreased, numerical integrations show that station-
ary pacemakers become unstable. Close to the instability
boundary, stable breathing and swinging pacemakers were
found [Figs. 3(a) and 3(b)]. For a breathing pacemaker,
the center remains stationary whereas the radius oscillates.
For swinging pacemakers, the radius stays approximately
constant while the position of the pacemaker oscillates.
Further lowering of t leads to the disappearance of any
stable pacemaker solutions.

Similar to plane waves in the CGLE [31], the waves
emitted by a pacemaker may become unstable when their

FIG. 3. Breathing (a), swinging (b), and Eckhaus-unstable
(c),(d) pacemakers. The displayed coordinate and time ranges
are DL � 50, DT � 125 (a),(b) and DL � 100, DT � 625
(c),(d). The parameters are L � 100, a � 1.38, e � 23.18,
l � 0.8, n � 83, g � 5.59 3 1024, s � 3.4 3 1024, and
for (a) b � 3.0, t � 0.001; (b) b � 2.65, t � 0.001; (c),(d)
b � 2.1, t � 0.025.
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wave number k0 exceeds the Eckhaus wave number given
by kEH �

p
�1 1 z3� �1 1 ab� �3 1 ab 1 2a2�21.

Among other effects, this may lead to the destabilization
of a stationary pacemaker, as illustrated by Figs. 3(c) and
3(d). Phase singularities and thus oscillation amplitude
defects are periodically generated at the core boundary,
giving rise to a short-wavelength regime in the core and
to a long-wavelength regime in the periphery. The core
gradually grows and eventually the whole medium is
occupied by rapid uniform oscillations.

In contrast to pacemakers which are created by local het-
erogeneities, autonomous pacemakers are not pinned and
their location is determined only by the initial conditions.
Moreover, such self-organized structures are able to move
through the medium when spatial parameter gradients are
present. Suppose, for example, that the parameter g varies
with a constant gradient k, i.e., g�x� � g0 1 k�x 2 x0�,
where g0 is the value of g in the center of the pacemaker.
For sufficiently small gradients (kR0 ø g0), linear per-
turbation theory can be used. Its application (see [29])
allows us to determine analytically the drift velocity VD as
VD � kR0≠gV �g0, k0� where V �g, k� is the front velocity
given by Eq. (2).

The simulation displayed in Fig. 4(a) was initiated with
a stable stationary pacemaker. After a constant gradi-
ent in the parameter g was introduced, the pacemaker
drifted through the medium in the direction of increasing
g. When the gradient was removed, the drift of the pace-
maker terminated and a spatially shifted stationary pace-
maker was recovered. The emission and propagation of
waves persisted during the drift [Fig. 4(b)]. In addition, the
Doppler effect led to a small increase of k in the direction
of motion.

In this Letter, we have analytically constructed self-
organized pacemaker solutions in the vicinity of a
pitchfork-Hopf bifurcation. Our numerical investigations
have shown that such self-organized patterns are stable
for a wide range of parameters. To create an autonomous
pacemaker, a sufficiently strong local perturbation should
be applied to the state corresponding to stable uniform
oscillations. This is in contrast to [15], where autonomous

FIG. 4. Drift of a pacemaker. The spatial gradient of the pa-
rameter g with k�g0 � 0.003 is applied inside the time interval
indicated by vertical dashed lines in (a), which shows the evolu-
tion of z in the time interval 0 , t , 2 3 105. The pacemaker
is drifting in the direction of increased g. The parameters are
g0 � 5.59 3 1024, b � 2.3, and t � 2. The rest are the same
as in Fig. 1. (b) displays the drifting wave pattern within a nar-
row time interval DT � 500 during the drift, marked by the
dotted vertical line in (a).
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target patterns were found near a Hopf bifurcation with a
finite wave number and thus uniform oscillations of the
medium were absolutely unstable. Our approach is also
different from the model [10,11] that was constructed to
explain target pattern formation in electrohydrodynamic
convection and which is based on a Hopf bifurcation
of a cellular spatial structure. On the other hand, Ohta
et al. [14] have investigated a two-component activator-
inhibitor model with coexistence of excitable kinetics and
stable uniform oscillations, and reported several differ-
ent kinds of autonomous wave sources. The subsequent
numerical studies [32] have, however, shown that while lo-
calized target patterns are stable, target patterns which ex-
tend over the whole medium are unstable in the model and
slowly evolve into uniform oscillations. Stable localized
target patterns are also found in the quintic CGLE [12].

Since our analysis is based on general amplitude equa-
tions, the results presented here are valid for any reaction-
diffusion system near a soft onset of birhythmicity with
small-amplitude limit cycles. In a separate publication
[25], this analysis will be applied to a particular chemical
model system. As in the case of a Turing-Hopf bifurca-
tion, the results of our analysis based on the amplitude
equations may remain (qualitatively) applicable even at
significant separation from the bifurcation point. Finally,
we note that the physical mechanism responsible for
the stabilization of pacemakers in the considered system
involves a long-range negative feedback, similar to the one
necessary for the formation of stable localized spots in
reaction-diffusion models with fast inhibitor diffusion.
Here, however, an infinite-range inhibition is caused not
by diffusion, but by nondamped propagation of waves
emitted from the core region. The effect of pacemaker
drift in systems with spatial parameter gradients provides a
convenient experimental method to identify self-organized
pacemakers and distinguish them from other target pat-
terns caused by local heterogeneities in the medium.
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