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Charge Density Wave, Superconductivity, and Anomalous Metallic Behavior
in 2D Transition Metal Dichalcogenides
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We propose a theory for quasi-two-dimensional transition metal dichalcogenides that provides a unified
microscopic picture of the charge density wave (CDW) and superconducting phases. We show, based
on the electron-phonon coupling and Fermi surface topology, that a CDW order parameter with sixfold
symmetry and nodes ( f-wave) gives a consistent description of the available experimental data. The
elementary excitations in the CDW phase are Dirac electrons. The superconducting state has its origin
on the attractive interaction mediated by phonons. The theory predicts strong deviations from Fermi
liquid theory in the CDW phase.
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The quasi-two-dimensional (2D) transition metal
dichalcogenides (TMD), 2H-TaSe2, 2H-TaS2, 2H-NbSe2,
and 2H-NbS2 have been extensively studied since their
discovery [1]. These are layered systems with a phase
diagram where charge-density-wave (CDW) order coexists
with superconductivity at low temperatures (see Fig. 1).
Many physical properties such as resistivity, thermal
expansion, sound velocity, and so on, are very anisotropic
and differ by orders of magnitude if measured parallel
or perpendicular to the metallic planes [2,3]. Neutron
scattering studies have shown that these systems undergo
a triple incommensurate CDW transition at a temperature
TCDW with wave vectors Qi � �1 2 d�bi�3, where bi are
the three reciprocal lattice vectors for a triangular lattice
with lattice spacing a [jbij � 4p��

p
3 a�] and d ø 1 is

the incommensurability (TaSe2 also has a transition into a
commensurate state, d � 0) [4].

Although the phenomenological description of the CDW
transition is well understood due to the work of McMillan
[5], the current understanding of the microscopic origin
of the CDW state is not complete. Fermi surface nesting,
which is the main mechanism for CDW formation in 1D
systems (such as 1T-TaSe2 [3]) leads to a lattice deforma-
tion with momentum 2kF (where kF is the Fermi momen-
tum), to the gapping of the Fermi surface and therefore
to insulating behavior. Band structure calculations (BSC)
[1,6] do not show, however, strong nesting at the Fermi
surface of TMD. Moreover, TMD become better metals
(with a resistivity drop [3]) inside of the CDW phase and
the specific heat behaves like a power of the temperature
T (instead of exponentially as in the case of an 1D CDW
transition). What is more striking is that TMD become
superconductors at low temperatures. An alternative sce-
nario was proposed by Rice and Scott (RS) [7] based on
earlier BSC [8] in which electron scattering with momen-
tum QSP between different saddle points (which produce
a logarithmically divergent density of states) would drive
the system into the CDW phase. The advantages of this
picture are clear: it does not require nesting, leads to a gap
0031-9007�01�86(19)�4382(4)$15.00
at the saddle points, and to the reduction of the resistivity.
More refined BSC have shown that the saddle points are
not as close to the Fermi surface as initially believed [6]
(see Fig. 2).

With the advent of high temperature superconductors
(HTC) many experimental techniques have been perfected.
Among them, angle resolved photoemission (ARPES) has
nowadays momentum and energy resolution that was un-
available when TMD were discovered. ARPES measures
the electronic spectral function, the loci of the Fermi sur-
face, and the momentum, k, and frequency, v, depen-
dent electron self-energy, S�k, v�. The imaginary part
of S�k, v� provides a direct measurement of the electron
lifetime and for a Fermi liquid behaves like Im�S�kF , v !
0�� ~ 1�t0 1 bv2�EF , where t0 is the impurity scatter-
ing lifetime, EF is the Fermi energy, and b is a constant (we
use units such that h̄ � kB � 1). Recent measurements of
S�k, v� for HTC [9] have shown that Im�S�kF , v�� ~ jvj
in clear disagreement with Fermi liquid theory but in agree-
ment with the marginal Fermi liquid (MFL) description
[10]. Stimulated by the recent developments in ARPES,
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FIG. 1. Phase diagram: Stars, TCDW ; filled squares, Tc. From
left to right: TaSe2, TaS2, NbSe2, and NbS2 [2,3]. a is the
in-plane lattice spacing and c is the interlayer spacing.
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FIG. 2. Schematic plot of the Fermi surface according to [6].
Dashed lines: nodal lines associated with Q1. Filled circles:
Dirac points. Empty circles: saddle points. Thick line: proposed
CDW gap.

TMD have been extensively studied in the last two years.
As a result of these studies a contradictory picture of the
origin of the CDW state has emerged. Although there are
indications for the opening of a CDW gap along the saddle
point direction (but in no other place along the Fermi sur-
face) [11], the measured jQSPj is larger than 2kF and jQij
(see Fig. 2) [12]. Furthermore, ARPES measurements of
the electronic self-energy have shown that, analogously to
the case of HTC, Im�S�kF , v ! 0�� ~ 1�t 1 bjvj [13].
These measurements clearly show that the current theories
for CDW formation cannot describe the current experimen-
tal situation.

We propose that, due to strong variations in the electron-
phonon coupling and to imperfect nesting of the Fermi sur-
face, the CDW gap is sixfold symmetric and has nodes
( f-wave). This f-wave state has lobes (the largest value
of the CDW gap, max�jDCDW �k�j�) along the saddle point
direction. This effect leads to the reduction of the electron-
phonon scattering in the same way as the RS mecha-
nism. The low-lying excitations in the CDW state are
Dirac electrons associated with the nesting between dif-
ferent branches (around the G and K points) of the Fermi
surface which are connected by Qi . Thus, the system re-
mains a good metal in the CDW phase. Because of the
loss of lattice inversion symmetry in the CDW phase, the
Dirac electrons are coupled via a piezoelectric coupling
to acoustic phonons. This coupling produces a damping
of the Dirac electrons and leads to a S�k, v� of the form
(T ø TCDW ):

Im�S�kF , v�� � t21
0 1 aT 1 gjvj (1)

for v , max�jDCDW j� and Im�S�kF , v�� � 1�t1, con-
stant, for max�jDCDW j� , v. We show that the data are
in good agreement with these results. Finally, we argue
that phonons drive the system to a superconducting state
via a Kosterlitz-Thouless (KT) phase transition. We pro-
pose that critical fluctuations of the superconducting or-
der parameter Ds lead to a pseudogap behavior above the
transition temperature Tc to a drop of the magnetic sus-
ceptibility, and to diamagnetic response above Tc (as seen
experimentally [14]).

Unlike ordinary metals, the electron-phonon coupling
gl�k, q� (where q � k0 2 k is the momentum transfer for
an electron being scattered by a phonon from k to k0 and
l is the phonon polarization) in transition metals is highly
dependent on the electron momentum. This dependence
is responsible for many anomalies observed in the phonon
spectrum in these systems [15]. Numerical studies have
shown that gl�k, q� can vanish at certain points in the
Brillouin zone [16]. A simple tight-binding calculation
gives

gl�k, q� �

s
2

NMvl,q

X
n

cjnjel,q ? n sin�q ? n�2�

3 cos��k 1 q�2� ? n� ,

where N is the number of atoms, M is the atom mass,
vl,q is the phonon frequency, el,q is the polarization
vector (e�

l,2q � el,q), n is the nearest neighbor vector,
and cjnj depends only on jnj. It is easy to see that
gl�k, Q1� vanishes along the nodal lines in Fig. 2. BSC
(and ARPES measurements) show that the Fermi surface
is holelike, centered around the G and K points, and
intercepts the nodal lines at the Dirac points (see Fig. 2).
At these points the CDW order parameter vanishes since
DCDW �k� ~ gl�k, Qi�. Observe that Q1 connects nodal
points located at different branches of the Fermi surface.
Moreover, as shown by numerical calculations [6] these
points are well nested and a CDW state can emerge.
In a triple CDW phase, however, the situation is more
complicated because Q2 connects the nodal points in the
same branch of the Fermi surface. This would imply a
finite coupling at these points and the opening of a gap
there as well. We observe, however, that in this direction
the Fermi surface is not nested [6] in contrast with the
case discussed above (these details are not shown in
Fig. 2). Thus, a gap cannot open at the Dirac points. The
conclusion is that the CDW gap will change sign in six
points along the Fermi surface leading to the situation
depicted on Fig. 2. This is the f-wave CDW state.

Let ck,s�cy
k,s� be electron annihilation (creation) opera-

tor for an electron with momentum k and spin projection
s�s �", #�. We can define the spinor operators

C
y
i,s�k� � �cy

k,s , c
y
k1Qi ,s� � �cy

1,i,s�k�, cy
2,i,s�k�� ,

where 1, 2 indicates if the fermion is particle or hole
(antiparticle) like. The Hamiltonian for the excitations
close to the nodal points is

HD �
X

i,k,s

C
y
i,s�k� �yFk�,is

z 1 y0kk,is
x�Ci,s�k� ,

(2)
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where yF is the Fermi velocity, y0 � j≠kDCDW �k�j, and
k�,i�kk,i� is the momentum perpendicular (parallel) to
the Fermi surface. All these quantities are calculated
at the Dirac points. Here sa with a � x, y, z are Pauli
matrices which act in the spinor subspace. Hamiltonian
(2) describes a system of Dirac fermions with energy
e

6
i,k � 6ei,k where ei,k �

p
y2

Fk2
�,i 1 y2

0k2
k,i . In what

follows we drop this index i since the Dirac electrons are
decoupled.

The triple CDW transition breaks the inversion symme-
try of the lattice leading to a three sublattice structure [1].
In this case a piezoelectric coupling can develop between
the Dirac fermions and acoustic phonons [17]. The lon-
gitudinal acoustic phonon field polarized along Qi is de-
scribed by

HA �
1

2rL

Z
dr �P2�r� 1 r2

Lc2
s �=F�r��2� , (3)

where cs is the sound velocity, rL is the lattice mass den-
sity, and P�r� and F�r� are the momentum and phonon
fields, respectively. The electron-phonon coupling is

HC � k
Z

dr F�r�
X
s

Cy
s�r�Cs�r� , (4)

where k is the piezoelectric coupling constant. The elec-
tron Green’s function for the problem described by Ham-
iltonian (2), (3), and (4) can be calculated self-consistently
in terms of the parameters t0, a, and g that appear in (1)
using scaling and renormalization group analysis as it was
shown in Ref. [18] for the case of d-wave superconduc-
tors. The main result of the interaction is the damping of
these excitations. As a result Im�S�kF , v�� is given in (1)
with t

21
0 � 27 meV, a � 2.14 and g � 0.212. These

results are valid for v ø max�jDCDW j� � 60 meV (ob-
tained from the onset of the optical absorption [19] and
ARPES [13]). For v . max�jDCDW j� the Dirac elec-
tron description breaks down and Im�S�kF , v�� � t

21
1 �

73 meV. In Fig. 3 we plot our results against the ex-
perimental data. The agreement is remarkable given the
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FIG. 3. Im�S�kF , v��. Experiments: squares (T � 34 K);
pentagons (T � 76 K) [13]. Theory: dotted (T � 0); continu-
ous (T � 34 K); dashed (T � 76 K).
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simplicity of the model. Furthermore, the predictions of
the MFL phenomenology originally proposed for the HTC
[10] can now be extended to the case of MTD. In fact, re-
cent dynamical transport measurements have pointed out
the striking similarities between the MTD and HTC [19].

Besides leading to damping, the phonons generate a
retarded interaction. This retarded interaction, as in an
ordinary superconductor, leads to pairing in the singlet
channel. The Cooper pairs, however, are made out of Dirac
fermions with opposite momenta relative to the Dirac
points. This should be contrasted with the BCS theory
where electrons pair across the Fermi surface. After
tracing out the phonons the pairing Hamiltonian becomes

HP � 2g
X
k,k0

s
y
a,bs

y
c,dc

y
a,"�k0�cy

b,#�2k0�cc,"�k�cd,#�2k� ,

where g � k2�vD is the coupling constant (vD � csL,
with L � 1�a, is a Debye frequency). At the mean-field
level the pairing Hamiltonian is written as

HP �
X

k,a,b

�sy
a,bDsc

y
a,"�k�cy

b,#�2k� 1 H.c.� , (5)

where Ds � 2g
P

k,a,b s
y
a,b	ca,"�k�cb,#�2k�
 is the su-

perconducting order parameter. The problem described by
(2) and (5) reduces to the diagonalization of a 4 3 4 ma-
trix via a Bogoliubov transformation. The eigenenergies
are E6

k � 6
p

e2
k 1 jDsj

2. Thus, in the superconducting
phase the Fermi surface is fully gapped by a CDW gap
along the G-K directions and superconducting gap along
the G-M directions. Moreover,

jDs�T , g�j � 2T cosh21�cosh�2pyFy0��Tgc��
3 e2�2pyFy0�Tg��

and gc � 4p3�2pyFy0�L. At T � 0 we have

jDs�0, g�j � 4pyFy0�1�gc 2 1�g� ,

which shows that superconductivity is possible only for
g . gc at T � 0. Thus, g � gc is a quantum critical
point (QCP) and gc is the critical coupling constant. This
result implies that there is a critical lattice spacing ac, be-
low which superconductivity is not possible. The critical
mean-field temperature is T��g� � jDs�0, g�j��2 ln�2��.
Notice that the dependence of the order parameter with
the coupling constant is very different from the BCS
expression (which does not require a critical coupling
constant). This transition can be associated with the spon-
taneous chiral symmetry breaking in the Yukawa-Higgs
model [20]. In our case, however, the order parameter
is complex, implying that there is an extra U�1� sym-
metry associated with the phase of the order parameter.
Because of the strong phase fluctuations in 2D the phase
transition can be only of the KT type (2D-XY) due to
the unbinding of vortex-antivortex pairs at a temperature
TKT �g� ~ ss�g� where ss�g� ~ jDs�0, g�j2 is the planar
superfluid density. This transition, however, does not pro-
duce true long-range order. The weak coupling between
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layers changes the universality class of the transition to
3D-XY with Tc � TKT �1 1 b� ln2�TKT ��cU���� where
b is a number of order unit, U� is the coupling energy
per unit of length between layers, and c is the interlayer
distance (we assume c ø TKT �U�) [21]. Thus, Tc grows
with decreasing c. As we can see, the relevant parameter
which controls the superconducting transition is a�c. In
Fig. 1 we plot the transition temperatures as a function
of this parameter. We can clearly see the anti-correlation
between TCDW and Tc (this relation is reminiscent of the
one found between the pseudogap energy scale and Tc in
HTC [22]). Notice that TaSe2 with Tc � 0.1 K is close
to the QCP. The growth of Tc under pressure [23] is
also consistent with our picture. Because T� . Tc we
expect a pseudogap region with no phase coherence for
Tc , T , T�.

The metallic state described here is similar in many
respects to the nodal liquid description of HTC [24]. How-
ever, the TMD Dirac fermions are not related superconduc-
tivity, but to a CDW state. In TMD the anomalous metallic
behavior is due to the coupling to acoustic phonons, while
in the case of HTC this is not clear. As shown in Ref. [18],
superconducting phase fluctuations alone are not capable of
producing MFL behavior. Therefore, there may be a hid-
den QCP in HTC. The concept of stripes, for instance, has
been discussed in this context [25]. It is worth noticing that
TMD also show stripe phases associated with the breaking
of the hexagonal symmetry in the triple CDW phase [26].
The possibility of breaking of the time reversal symmetry
and generation of gapped superconducting phases has also
been studied [18,20]. More recently, it has been proposed
that due to strong electron-electron correlations an exotic
CDW state might be the hidden QCP of HTC [27] and that
the pseudogap temperature marks a real second order tran-
sition that is smeared by disorder. If this is indeed correct
then the anomalies in these 2D systems can have the same
origin.

In summary, we have proposed a microscopic theory
for the CDW and superconducting phases of TMD that
involve the formation of a gapless CDW state. The ele-
mentary excitations are Dirac fermions that pair up due
to the coupling to phonons and generate a superconduct-
ing state at low temperatures. We show that in the CDW
state the coupling to phonons leads to MFL behavior and
to many anomalies in the physical properties. We show
that our theory can explain the available experimental data
including ARPES. We predict that high-resolution ARPES
should be able to measure the modulation of the CDW gap
around the Fermi surface and the opening of a supercon-
ducting gap at the Dirac points. The similarities between
the phenomena described here and that observed in other
layered systems (such as HTC and graphite [28]) is strik-
ing, and the study of such exotic CDW might illuminate
the way for the understanding of the complex physics in
transition metal systems.
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