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A new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place
when (i) only “acoustic” phonon modes of the wire are thermally populated and (ii) phonons are subject
to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to
the appearance of the flexural modes with high density of states in the wire phonon spectrum. They give
rise to the T 1�2 temperature dependence of the wire thermal conductance. Experimental situations where
the new regime is likely to be detected are discussed.
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Most often, in dielectrics and semiconductors heat
is conducted by means of phonon transfer. At low
temperatures it is controlled by the phonon scattering
at the surface of the sample, since the internal mecha-
nisms of scattering due to the lattice anharmonicity
and intrinsic defects provide the phonon mean free
path far above the typical dimensions of the sample.
In this case the phonon transfer is similar to the gas
flow in small pipes in the Knudsen regime and, strictly
speaking, it is impossible to introduce local Fourier
law for determination of the heat flux density [1].
However, for the samples in the shape of a wire it is
still possible to speak about the thermal conductance,
sT , that is defined as a ratio of the heat flux through
the wire and the temperature difference between the
reservoirs connected by the wire. If phonon scattering
at the surface is diffusive, then sT � T3. Decrease
of temperature, however, increases the characteristic
phonon wavelength and reduces the scattering proba-
bility at the surface. If the probability of the specular
phonon scattering at the surface is close to unity, then
the phonon spectrum is substantially modified. For ideal
wires having constant cross section it is broken in a set
of branches where the phonon frequency v depends on
the 1D wave vector q directed along the wire axis [2,3].
In this Letter we consider heat transfer at extremely
low temperatures. Speaking about the low temperatures,
we mean that only the phonon states of the “acoustic”
branches with v ! 0 at q ! 0 are thermally populated.
In other words, we assume T ø h̄Dv, where Dv is
the characteristic value of the frequency gap between
the adjacent phonon branches, Dv � y�a, where y and
a are the characteristic sound velocity and dimension
of the wire cross section, respectively. This condition
corresponds to the effective reduction of the phonon
momentum space dimensionality. It can be realized
in the modern suspended films and wires, employed for
the fundamental studies of the phonon confinement and
electron-phonon interaction [4,5], and as elements of
ultrasensitive phonon detectors [6]. Normally, condition
T ø h̄Dv corresponds to subkelvin temperatures. So,
for a � 100 nm and y � 5000 m�s, h̄Dv corresponds
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to the temperature about 0.4 K. If the wire structure is
perfect enough, then phonons are transferred between
the reservoirs ballistically. Ballistic transfer in wires was
studied theoretically in Refs. [7–9], where both thermal
conductance and phonon correlation characteristics have
been analyzed. It was found that in the ballistic regime
each phonon branch can contribute to the value of the
thermal conductance no more than the fundamental
quantum pT�6h̄4, regardless of the phonon spectrum
details. This prediction was recently confirmed experi-
mentally [10]. In this Letter we consider the opposite
case, when phonons are multiply scattered elastically
while being transferred through the wire. A similar
problem was analyzed previously in Refs. [11,12] where
the numerical calculations of the phonon transmission
through the imperfect wire have been performed. In
these works, however, the authors used simplified models
of the wire phonon spectrum and miss some qualitative
features of heat transfer. We demonstrate in this Letter
that for the case of effective phonon scattering at low
temperatures the thermal conductance is proportional
to T1�2. This feature is qualitatively different from the
ballistic phonon transfer and from the surface-scattering-
controlled transfer of 3D phonons. We show that the
main physical peculiarity of the 1D phonon transfer
in wires is due to the special features of the wire
phonon spectrum in the low-frequency region. Namely,
some of the acoustic branches have quadratic dispersion
and, therefore, high density of states and small group
velocity. This substantially affects phonon scattering
probabilities as well as the partial contributions of the
phonons of a particular type to the heat flux. Note that
similar effects arising due to the high density of states
of the low-dimensional phonons for electron-phonon
interaction in thin films have been reported recently
[13]. In the experiments, the sT � T1�2 dependence
should replace sT � T , characteristic for the ballistic
phonon transfer, with temperature increase. We show
that the temperature interval where the considered
regime of heat transfer can be detected grows with an
increase of the phonon scattering and the length of
the wire.
© 2001 The American Physical Society
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As is well established [3], in free-standing wires there
are four acoustic branches having the following dispersion
at qa ø 1:

vd,t � yd,tq, vf1,f2 � yf1,f2aq2. (1)

Here d, t, f1, and f2 label the dilatational, torsional, and
two flexural branches. The values of yd , yt , yf1, and yf2
are of the order of the sound velocity. Their specific values
are determined by the elastic properties of the wire material
and by the shape of the wire cross section. To describe
the steady-state heat transfer we use the standard kinetic
equation for the phonon distribution function f:

≠fi

≠x
gi � Sti� f� , (2)

where i � d, t, f1, f2; gi is the phonon group veloc-
ity, the x axis is directed along the wire, and St� f� is the
integral of collisions. Here we consider only elastic scat-
tering of the phonons by the defects of the wire structure.
These defects can be either due to the intrinsic imperfec-
tions of the crystal, say, natural isotopes, or can arise in
the course of the nanowire fabrication process. Note that
in actual suspended nanowires the latter source, in par-
ticular, surface roughness, is likely to provide the major
contribution to the phonon scattering. We do not take
into account three-phonon inelastic scattering due to the
crystal anharmonicity. Having evaluated the correspond-
ing phonon mean free path, we have found that it far ex-
ceeds the typical length of the wires, about tens of microns.
Under this approach for St� f� we have

Sti� f� �
X
j,q0

�W � ji�
q0q fj�q0� �1 1 fi�q��

2 W
�ij�
qq0 fi�q� �1 1 fj�q0��� , (3)

where W
� ji�
q0q is the probability of the phonon transition

�q0, j� ! �q, i�. We consider defects whose dimensions
are much less than a and typical phonon wavelength which
corresponds to the Rayleigh scattering regime. To obtain
W

�ij�
qq0 , it is necessary to write down the perturbation of

the elastic energy caused by a defect and calculate the
phonon scattering probability using the Fermi golden rule.
Using the general form of the elastic energy density [2],
the leading term at small q for the scattering probability
can be written down as

W
�ij�
qq0 �

2p

L
wij

q2q02

vv0
d�v 2 v0� . (4)

Here factors q2, q02 come from the spatial derivatives of
the lattice displacements in the expression for the elas-
tic energy density, while v and v0 in the denominator
come from the expressions for the operators of the lattice
displacements. In Eq. (4) L is the length of the wire; the
factor 2p is introduced for simplicity. The factors wij
characterize the effectiveness of the scattering and depend
on the spatial distribution, concentration, and characteris-
tics of the defects. Note that the form of Eq. (4) is provided
by the defects of the elastic constants only. Contribution
due to the mass defects is proportional to vv0. As in
the case of bulk crystals, for the transitions between the
1D phonon branches having linear dispersion, the elastic-
constant and mass defects provide scattering probabilities
with identical dependences on the phonon wave vectors.
If, however, i or j corresponds to the flexural phonons, for
small q contribution of the mass defects is much less than
that of the elastic-constant defects.

For the introduced form of the scattering probabilities
we obtain

f
�o�
i � 2tigi

≠f
�e�
i

≠x
, (5)

where f
�o�
i and f

�e�
i are odd and even parts of the distribu-

tion function and ti is the effective scattering time of the
ith mode:

1
ti

�
X
q0,j

W
�ij�
qq0 . (6)

Straightforward calculations demonstrate that if qa ø 1,
then the main contribution to the 1�ti is due to the scat-
tering where the final state belongs to one of the flexural
modes, which is the direct result of their high density of
states:
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As we see, tf1,f2 ! 0 as q ! 0. This means that semi-
classical treatment of phonons by means of a kinetic equa-
tion is invalid for very small q. Introducing a characteristic
frequency v� according to tf jv�v� � �v��21, we restrict
ourselves by consideration of regimes where h̄v� ø T .
In this case, the major contribution to the heat flux is pro-
vided by the well-defined phonon modes whose frequency
exceeds considerably the scattering rate. Note that simi-
lar wave vector dependence of the scattering rate, as for
flexural phonons, is inherent for scattering of electrons on
short-range fluctuations of potential energy in the 1D case.

To determine the value of thermal conductivity we as-
sume that f

�e�
i have Planck form with smooth spatial vari-

ation of temperature and obtain the following expressions
for the heat fluxes due to the phonons of each type, ji:
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where z stands for Riemann function. It is easy to see that at T ø h̄Dv the dilatational and torsional phonons provide
a major contribution to the heat flux and, therefore, to the thermal conductivity and thermal conductance sT � k�L:

k � p1�2z �3�2�
µ

T
h̄

∂1�2

a3�2

"
y3

d

√
wdf1

y
3�2
f1

1
wdf2

y
3�2
f2

!21

1 y3
t

√
wtf1

y
3�2
f1

1
wtf2

y
3�2
f2

!21#
. (9)
From Eqs. (7) and (8) we can finally elucidate the role of
the flexural phonons in heat transfer. First, their contribu-
tion to the heat flux is small due to their slowness and high
scattering probability. Indeed, according to Eq. (4) the lat-
ter is proportional to the square of the initial phonon wave
vector. If we consider phonons having energy about T ,
then for the flexural phonon the value of q2 is greater than
for the dilatational and torsional phonons roughly with the
factor h̄Dv�T . Second, as a result of their high density of
states, the flexural phonons provide very effective scatter-
ing for the dilatational and torsional phonons. It is worth
mentioning that the flexural phonons are important also for
the nonstationary heat transfer. The latter is characterized
by both thermal conductivity and thermal capacity per unit
length, c. It can be easily obtained that for T ø h̄Dv

c � T1�2 and the flexural phonons provide a major contri-
bution to c, again, due to their high density of states.

An important point that is worth discussing is about
the influence of the phonon localization on the heat trans-
fer. According to the general predictions of the localiza-
tion theory, if only elastic scattering is present and there
is no source of dephasing, the conductance of a 1D sys-
tem decays exponentially with its length L if L exceeds
the mean free path of a carrier. We believe, however, that
the described regime of heat transfer is not canceled by
localization, in general. This is because we deal with
the multichannel transfer regime where the role of dis-
tinct channels is essentially different. In particular, the
main contribution to the heat flux is due to the dilata-
tional and torsional phonons, while the flexural phonons
provide a major contribution to the overall phonon density
of states. Using semiquantitative arguments of Thouless
[14], we expect that localization is likely to be manifested
for L . l�h̄Dv�T �1�2 ¿ l, where l is the characteristic
mean free path of the dilatational and torsional phonons.
Nevertheless, we stress that the problem of localization
definitely deserves more rigorous consideration. As we
demonstrated, the peculiarities of the phonon spectrum of
a wire bring about the asymptotic behavior of the phonon
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mean free path which is qualitatively different from that of
bulk crystals. This can cause qualitatively new features of
localization phenomena.

Finally, it is necessary to analyze the experimental situ-
ations where the described regime of heat transfer can be
detected. This directly follows from the main assumptions
we made. First, the condition T ø h̄Dv must be satis-
fied. Second, phonons must be multiply scattered during
the transfer through the wire. The first condition depends
on the wire cross section and material parameters only,
while the second one depends on the wire length and char-
acteristics of defects. Since the characteristic phonon mean
free path decreases as the temperature increases, the tem-
perature range where the predicted heat transfer regime
can be detected expands for the longer and less perfect
wires. This is qualitatively illustrated in Fig. 1, where we
plot schematically the temperature dependence of the wire
thermal conductance. The vertical line marks the tempera-
ture where the condition T � h̄Dv is reached. The dashed
line corresponds to the ballistic phonon transfer, sT � T ,
while the two dotted curves describe the case of intensive
phonon scattering, considered in this Letter, sT � T1�2.
Obviously, if the wire cross section is fixed, the upper dot-
ted curve corresponds to the wire which is either shorter
or more perfect, since sT � 1��Lw�. The two solid lines
show the resulting temperature dependence of the thermal
conductance. We see that in the wire that is longer or less
perfect the T1�2 law is realized in the wider temperature
range and is likely to be detected. Note that some addi-
tional features, not shown in Fig. 1, can appear at tempera-
tures below the T to T1�2 transition. They arise because
the flexural phonons are scattered much more effectively
than the dilatational and torsional phonons. Therefore, at
some intermediate temperatures only the dilatational and
torsional phonons are ballistic. In this case sT � T , but
the value of the coefficient is twice lower than for the
case where all acoustic phonons are ballistic. In experi-
ment [10] sublinear temperature dependence of the wire
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FIG. 1. Schematic temperature dependence of the wire thermal
conductance in the different transport regimes. The dashed curve
corresponds to the ballistic phonon transfer, the two dotted lines
correspond to the phonon transfer with intensive scattering, and
the solid line represents the resulting temperature dependence
of sT . The vertical line marks the temperature where the upper
phonon branches become thermally populated. The upper dotted
line represents the dependence for the wire which is shorter or
is characterized by less intensive phonon scattering.

thermal conductance was detected in some temperature
range. However, this feature can appear not only due to
the phonon scattering described in this Letter, but also due
to the imperfect acoustic coupling between the wire and
the reservoirs. It is necessary to undertake additional stud-
ies to determine which of these two reasons is responsible
for the observed behavior.

In conclusion, we have predicted the new regime of heat
transfer in nanowires at low temperatures, where only the
lowest branches of the wire phonon spectrum are ther-
mally populated. It has been demonstrated that the flex-
ural phonons having quadratic dispersion play an especial
role. They accumulate most of the wire thermal energy,
practically do not contribute to the heat flux, and, finally,
provide effective scattering to the dilatational and torsional
phonons, which carry most of the heat flux. We have found
that in this case thermal conductivity is proportional to
T1�2. Experimentally, this heat transfer regime is most
likely to be detected in the samples with relatively high
phonon scattering.
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