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Fluid flow fields in a pair of quasi-two-dimensional channel models, each of which vacillates chaot-
ically between distinct flow regimes, synchronize if only the small-scale eddy components of the two
flows are coupled. The synchronization behavior also governs the relationship between different sectors
of the same continuous channel. Where there is no natural boundary to define the sectors, but the sectors
are separately forced, the channel can be represented as two coextensive, coupled channel models with
different forcing terms. Generalized synchronization of these two systems implies a relationship between
the Atlantic and Pacific sectors of the Earth’s climate system.
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It has been established in the past decade that loosely
coupled chaotic oscillators will fall into stably synchro-
nized motion along their strange attractors, irrespective of
initial conditions, in a wide variety of scenarios [1]. How-
ever, in contrast to the ubiquitous synchronization of oscil-
lators with limit cycle attractors in nature, the widespread
occurrence of synchronized chaotic oscillators in naturally
occurring systems has not been demonstrated. Rather, the
phenomenon of synchronized chaos has been explored
primarily in low-order or man-made systems, primarily
for applications to secure communications. More recently,
chaos synchronization was demonstrated in spatially
extended systems [2], and a vestige of synchronization
in low-order systems with time-lagged coupling was pro-
posed to explain “teleconnection patterns” linking weather
phenomena in widely separated regions of the Earth’s
atmosphere [3,4]. This previous study relied on a severe
truncation of the partial differential equations of geophysi-
cal fluid dynamics to generate a low-order system, which
was then coupled, using a wave-dynamical ansatz, to an-
other such system representing the opposite hemisphere.
The behavior of such low-order truncations of fluid-
dynamical systems varies qualitatively with order of
truncation. In this Letter we present a more general
synchronization scenario: A pair of fully resolved
quasi-2D fluid models will synchronize when only the
small-scale/high-frequency components of the flow are
coupled. Such synchronous coupling is key to explaining
the relationship between different sectors of the same con-
tinuous channel in a model of the large-scale atmospheric
flow. In a system whose parts are strongly coupled,
with no natural boundary between them, the definition of
subsystems on which to base a study of synchronization
may not be obvious. Here, we use the fact that the two
sectors of the channel have distinct forcing mechanisms,
in the realistic case of Atlantic/Pacific coupling, to unfold
the system into two coupled models of the entire channel,
each model with different forcing terms, in order to
demonstrate the implications of eddy-induced synchro-
nization for the intersectorial correspondence between
states. As with the related phenomenon of controlled
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chaos, which was recently shown to apply to a model of
the El Niño cycle [5], synchronized chaos is thus shown
to be relevant to the behavior of the Earth’s atmosphere,
and to many other naturally occurring fluid systems.

We consider a model of fluid flow in a two-layer channel
given by the following equation for the time derivative of
potential vorticity q:
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where the layer i � 1, 2, c is the stream function, and the
Jacobian J�c , ?� � ≠c
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≠x gives the advective con-
tribution to the comoving (“Lagrangian”) derivative D�Dt.
Equation (1) states that potential vorticity is conserved on
a moving parcel (generalizing the conservation of angular
momentum to a continuous medium in a nonuniformly ro-
tating frame and accounting for the possibility of vortex
stretching in each layer), except for forcing Fi and dissi-
pation Di . The discretized potential vorticity is

qi � f0 1 by 1 =2ci 1 R22
i �c1 2 c2� �21�i , (2)

where f�x, y� is the vorticity due to the Earth’s rotation
at each point �x, y�, f0 is the average f in the channel,
b is the constant df�dy, and Ri is the Rossby radius of
deformation in each layer (defined in Ref. [6]). Periodic
boundary conditions are imposed in the longitudinal x di-
mension. The form of the dissipation terms Di , parameter
values, and other details are based on Ref. [7], except that
the width of the channel is half the length and a second
channel (not shown in the figures), with flow in the oppo-
site direction, is used to join the upper and lower latitudinal
boundaries, in place of the free slip boundary conditions
used in [7]. This quasigeostrophic model provides a good
approximation to the nearly two-dimensional atmospheric
flow in a rotating frame [6]. If the forcing is chosen to be
a relaxation term Fi � m0�q�

i 2 qi�, the flow will tend to
a jetlike form near the beginning of the channel, for q�

i de-
fined by the forcing stream function c

�
i shown in Fig. 1a,

via (2). For appropriately chosen dissipation Di , the model
will then vacillate chaotically between two relatively stable
flow regimes that naturally divide state space, illustrated
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FIG. 1. Stream function (in units of 1.48 3 109 m2 s21) de-
scribing the forcing c� (a),(b), and the evolving flow c (c)–(h),
in the parallel channel model with dissipative coupling of the
eddies [given by (1), (3), and (4), in conjunction with Ref. [7] ],
for the indicated numbers n of time steps in a numerical inte-
gration. An average stream function for the two vertical layers
i � 1, 2 is shown. One time step is �0.4 h. The relaxation time
1�m0 defining the coupling strength is on the order of one time
step. Synchronization occurs by the last time shown (g),(h), de-
spite differing initial conditions.

for instance by the flows in Figs. 1e and 1g, which are
usually referred to as “zonal” and “blocked,” respectively
[7]. The division into these state space regimes is also of
practical interest because blocked flow interrupts the nor-
mal progression of weather patterns from west to east and
results in extreme weather conditions.

We now couple two models of the form (1), imagin-
ing a physically unrealizable configuration in which each
point in a given layer of one model is coupled to the cor-
responding point in the corresponding layer of the other
model. The coupling is given by a modified forcing term:

FA
k � mc

k�qB
k 2 qA

k� 1 �m0 2 mc
k� �q�

k 2 qA
k� ,

FB
k � mc

k�qA
k 2 qB

k� 1 �m0 2 mc
k� �q�

k 2 qB
k� ,

(3)

where the flow has been decomposed spectrally and the
subscript k on each quantity indicates the wave number k
spectral component. The superscripts A and B designate
the two separate channel models, each of which has two
layers. The layer index i has been suppressed in (3) and
will be suppressed henceforth. If the coupling coefficient
m

c
k is allowed to vary with the wave number, then we can

arrange to couple the small-scale/high-frequency compo-
nents (the “eddies”) while leaving the large-scale modes
uncoupled, by setting

mc
k � 0, if jkxj # kx0 and jkyj # ky0 ,

mc
k � m0�1 2 �k0�jkj�4� otherwise,

(4)

defining a slightly smoothed step function. Following
Ref. [7], we set the wave number cutoffs kx0 � 3 and
ky0 � 2 (in units of waves per channel length or width,
respectively) to distinguish between eddies and the large-
scale flow. It is found that with the coupling so defined, the
flows in the two channels synchronize completely, regard-
less of initial conditions, as illustrated in Fig. 1. Synchro-
nization does not occur in the opposite coupling scenario
where only the large-scale modes are coupled. Of course,
synchronization does occur if all modes are coupled. The
phenomenon is patently independent of the resolution of
the model, and occurs even when the geophysical constants
b and f vanish.

To show the relevance of synchronization in the parallel
channel model to a physical situation, we consider the
following modifications: First, we place the jets in the two
channels in different positions, skewed in the x dimension,
so that qA� fi qB�, as shown in Figs. 2a and 2b. Second,
we use the nonstandard coupling:

DqA

Dt
1 cJ�cA, qB 2 qA� � FA 1 D , (5a)

DqB

Dt
1 cJ�cB, qA 2 qB� � FB 1 D , (5b)
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FIG. 2. Stream function describing the forcing and evolution
of a coupled parallel channel model as in Fig. 1, but with longi-
tudinally skewed forcing jets cA� fi cB� (a),(b) and advective
coupling [Eqs. (5) and (6)], with c � 1�2. Near-identical syn-
chronization occurs by the last time step shown (e),(f ). The
solid-line boxes designate the regions in the two channels used
to label a given flow as “blocked” or “zonal.” Blocking activ-
ity in the dashed-line box in channel A, which is nearly the
same as in the solid-line box in channel B after synchronization,
anticorrelates with blocking in the solid-line box in channel A
(similarly for the dashed-line box in channel B).
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that is, we introduce the coupling in the advection terms
instead of in the forcing terms. The forcing FA,B is given
by the second term in (3), i.e.,

F
A,B
k � �m0 2 mc

k� �q�A,B��
k 2 q

A,B
k � , (6)

which dynamically constrains the large-scale components,
but not the eddies. The synchronization of two chaotic sys-
tems is commonly robust against variations in the form of
the coupling, and indeed, the coupled channels are found
to synchronize (albeit less stably) with the advective cou-
pling (5), as seen in Fig. 2. While the systems cannot ex-
hibit identical synchronization as before, since qA� fi qB�,
FA fi FB, the correspondence that defines the generalized
synchronization [8] between the flow patterns is very close
to the identity, as seen in the figure. We next note that
the average q̂ � �qA 1 qB��2 of the solutions of (5a) and
(5b), for strong coupling c � 1�2, is the solution of a
model with the average forcing, which folds the two chan-
nels together:µ

Dq̂
Dt

∂
k

� 1�2�FA
k 1 FB

k � 1 D̂k

� �m0 2 mc
k� �1�2�qA�

k 1 qB�
k � 2 q̂k� 1 D̂k ,

(7)

since the advective coupling terms in (5) combine to give
the proper nonlinear advective term in (7). The potential
vorticity q̂ is thus the solution for the single channel model
shown in Fig. 3, which has two sectors, each forced by
a separate jet. [Synchronization also occurs when only
the small-scale components are included in the advective
coupling term in (5)]. Because of the synchronization,
we have q̂ � qA � qB, so the solutions of the unphysical
parallel channel model, for c � 1�2, are also approximate
solutions of the physical two-sector model. For 0 , c ,

1�2, the two single-sector models are partially coupled.
The two sectors of the channel can be taken to repre-

sent the Atlantic and Pacific sectors of the Northern Hemi-
sphere midlatitude region, since the simpler channel model
given by (1) was intended to represent either one of these
sectors, considered in isolation. There is an upper tro-
pospheric jet over each ocean that drives blocked/zonal
flow vacillation in the corresponding sector. The periodic

FIG. 3. The forcing stream function ĉ� for the two-sector
model (7), with one jet in each sector. At any given time, the
flow in each sector is labeled as “blocked” or “zonal,” depending
on whether the minimum, taken over all longitudes x in the box
in that sector, of the difference in stream function c latitudinally
across the box, is less than or greater than 0.01 (in the units of
Fig. 1), respectively.
4300
boundary conditions imposed on the single-sector mod-
els are taken to represent the actual topology of a midlati-
tude band on the Earth’s surface, but with the opposite
sector assumed to be passive. The two channels in the
system (5) with no coupling (c � 0) would crudely repre-
sent the Atlantic sector with a jetless Pacific, and a Pacific
sector with a jetless Atlantic, respectively. As the cou-
pling between the channels is increased, the dynamics of
each channel changes so as to incorporate an approximate,
“virtual” counterpart of the dynamics of the sector that
is forced in the other channel. For some coupling value
c , 1�2, the channels synchronize. The type of chaos
synchronization exhibited here, in which the dynamics of
the two systems change when they are coupled, is gener-
ally important for strong coupling.

The relationship between the two sectors is given by the
correspondence that defines the synchronization manifold.
Although this correspondence is near to the identity in the
representation suggested by Fig. 2, corresponding states in
the two channels are described very differently, giving rise
to an instance of generalized synchronization in the man-
ner of the original formulation of that concept [8]. While
the state of channel A is characterized as blocked or zonal
depending on the flow in the first half of the channel, in the
area denoted by the solid box in Fig. 2, just downstream of
the channel’s driving jet, the state of channel B is similarly
characterized depending on the flow in the second half of
the channel. It turns out that blocking activity is weakly
anticorrelated in the two halves of either channel, whether
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FIG. 4. Correlation between binarized (blocked vs zonal)
states of the two sectors of the model illustrated in Fig. 3,
with the binarization as defined in the caption thereto, in
numerical integrations of (7) over 4 3 105 time steps with
arbitrarily chosen initial conditions. The horizontal axis is the
forcing strength m0 (in units of 7.3 3 1025 s21). 3’s denote
correlations for the two-sector model as previously defined,
squares are for a variant with one sector two-thirds as long as
the other, triangles are for one sector one-half as long as the
other, �’s are for shortened jets in both sectors, 1’s are for
lengthened jets in both sectors, and circles are for a variant
in which the latitudinal positions of the two jets are skewed
arbitrarily by shifts ranging from a channel half-width to a
channel width. Significant anticorrelation is found in all model
variants, for m0 not too small, except in the case of latitudinally
skewed jets.
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FIG. 5. Correlation between blocking activity in the Atlantic
(100± W 100± E) and Pacific (100± E 100± W) sectors, in ob-
served meteorological data, on days of given latitudinal skew
between Atlantic and Pacific jet positions. The data and block-
ing definitions are as in Ref. [3], except Northern Hemisphere
winters for the 40 yr period 1958–1998 are considered. Daily
jet position is defined as the position of the maximum eastward
component of wind, in the same observational data set, at an
altitude corresponding to a pressure level of 300 mb, at non-
blocked longitudes. Correlations are shown for the full 40-yr
period (solid line) and for five 8-yr segments (five broken lines).
The partitioning demonstrates that the increase in correlation as
the skew increases from 0± to 10± is statistically significant.

or not the channels are synchronously coupled. (For c �
0, anticorrelation is suggested by the detailed study of the
single-sector model by Vautard and Legras, who showed
that the eddies induced by a blocked flow pattern tend to
maintain that pattern, but that the eddies weakly inhibit
blocking at other locations [9].) Synchronization there-
fore implies anticorrelation between blocking in the two
sectors. That is to say, the correspondence defining gen-
eralized synchronization, described in natural variables, is
very far from the identity and implies anticorrelation in a
natural binarization of the state spaces [10].

Since blocking is defined nonlinearly in terms of the
flow field, anticorrelation in the average field q̂ does not
follow generally from anticorrelation within the two paral-
lel channels separately, but does follow in the synchronous
case where q̂ � qA � qB. Weak anticorrelation is indeed
found in the two-sector model, as seen in Fig. 4 for several
variants of the model. The effect is induced by exchange
of eddies. If a k-independent forcing is used instead of
(6), as in the original single-sector model, so that the ed-
dies are not free to mediate a sufficiently strong coupling,
then both the synchronization in the parallel channel model
and the anticorrelation in the two-sector model are found
to disappear.

The prediction that the exchange of eddies between the
Atlantic and Pacific sectors causes anticorrelation of block-
ing activity cannot be directly compared with observations
because the treatment of the large-scale flow in the model
is unrealistic. In reality, the velocities and other char-
acteristics of the jets vary. When the mass transport is
high, blocking is less likely, so that coupling between the
large-scale components results in a correlating effect that
competes with anticorrelation due to eddy exchange. A full
analysis of this competition will be given in a longer paper.
Here, we note a way in which the masked anticorrelation
might still be detected in meteorological observations. It
is found in the model that the anticorrelation effect, while
rather robust against most changes in flow configuration,
tends to disappear when the jets are skewed latitudinally
(i.e., in the y direction), as illustrated by correlation val-
ues (circles) plotted in Fig. 4. This finding agrees with the
observation in Fig. 5 that correlation in blocking activity
is enhanced on days when the upper tropospheric jets over
the Atlantic and Pacific are skewed in a latitudinal posi-
tion, by shifts up to 10±.

As to the generality of the results presented here: It
cannot be expected that the eddy-induced synchronization
phenomenon will carry over to full three-dimensional fluid
flow, because of the well-known difference in the direction
of energy cascade between 2D and 3D flows. But in the
many situations where a 2D approximation applies, the
fact that eddies exchanged between parallel channels cause
flows to synchronize will be of consequence.
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