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Inhibition of Decoherence due to Decay in a Continuum
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We propose a scheme for slowing down decay into a continuum. We make use of a sequence of ultra-
short 2p pulses applied on an auxiliary transition of the system so that there is a destructive interference
between the two transition amplitudes —one before the application of the pulse and the other after the
application of the pulse. We give explicit results for a structured continuum. Our scheme can also inhibit
unwanted transitions.
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One of the fundamental causes of noise at the optical fre-
quencies is the intrinsic spontaneous emission. It is well
known that the performance of many systems is limited by
spontaneous emission. For example, the noise figure of
an amplifier is determined by spontaneous emission. One
of the challenges therefore is to find ways in which spon-
taneous emission noise can be reduced if not totally in-
hibited. Several proposals exist in literature for reducing
spontaneous emission noise. These include the placing of
atoms in a photonic band-gap structure [1,2], as well as the
use of external fields [3] and quantum interferences [4,5].
As is well known, spontaneous emission noise arises from
considerations based on the interaction of an atom with the
vacuum of the electromagnetic field. The vacuum acts like
a zero temperature bath. It may be noted that the question
of inhibiting the effects of a heat bath is being extensively
studied and several new proposals exist for such an inhi-
bition [6–10]. For example, for a spin system interacting
with a bath the decoherence can be slowed [6] by apply-
ing a sequence of p pulses applied at intervals of a short
period t which is less than the bath correlation time.

In this Letter we consider the case of spontaneous emis-
sion from an excited atom. One has considerably more
freedom with atoms than with spins, as in the former case
we could use a different transition to control spontaneous
emission. We propose a scheme to suppress spontaneous
emission on (say) the emission from the state je� to jg�
by using an auxiliary transition je� to j f�. We apply a
sequence of ultrashort 2p pulses separated by an interval
t. We demonstrate how a destructive interference between
the evolution from to to to 1 t and to 1 t to to 1 2t can
lead to suppression of decoherence. It should be borne in
mind that the decoherence time scale is generally propor-
tional to the decay time. The destructive interference is
related to the very remarkable property that after the ap-
plication of a 2p pulse the state je� acquires a phase shift
of p . An important by-product of our investigation is the
possibility of suppressing undesirable weak transitions.

We first consider a simple case which is adequate to de-
scribe the main idea and which by itself is very relevant
to the subject of quantum computation [11]. Consider a
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quantum system which can make an unwanted weak tran-
sition from the state jg� to je� as a result of a perturbation
y. Let d be the detuning; i.e., the perturbation need not
be resonant with the transition jg� $ je�. The interaction
Hamiltonian in the interaction picture is

H1�t� � h̄yje� �gje2idt 1 H.c. (1)

The perturbation theory leads to the probability of
transition

peg � jyj2
sin2�dt�2�

�d�2�2 . (2)

We next demonstrate how this unwanted transition could
be inhibited by applying a sequence of very short 2p

pulses [12] on the transition jg� $ jl� (Fig. 1). We thus
divide the total time interval into a large number 2N of
short intervals t. The system evolves under y from to to
to 1 t. At to 1 t we apply an ultrashort 2p pulse on the
transition jg� $ jl�. The system evolves from to 1 t to
to 1 2t under y. At the instant to 1 2t the 2p pulse is

FIG. 1. Scheme for suppression of an unwanted transition
jg� ! je� caused by a weak off-resonant perturbation y. The
bold arrow represents the 2p pulse on the transition jg� $ jl�.
The dots denote the times when an ultrashort 2p pulse is
applied. In between the pulses the system evolves under y.
© 2001 The American Physical Society 4271
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applied again. This process is repeated N number of times.
The system then evolves as follows. For to , t , to 1 t,
we have

jc�t�� � jg� 2 iyje� �X�t 2 to���2id��e2idto ;

X�t� � �e2idt 2 1� .
(3)

At time to 1 t after the application of 2p pulse, the state
of the system is

jc� � 2jg� 2 iyje�X�t�e2idto ��2id� . (4)

At a time to 1 2t just before the application of the second
pulse the state would evolve into

jc� � 2jg� 2 iyje� �X�t���2id��e2idto

1 iyje� �X�t���2id��e2id�to1t� 1 o�y2� , (5)

which on application of the second 2p pulse changes to

jc� 	 jg� 1 iyje� ���X�t����2e2idto��2id� 1 o�y2� . (6)

The transition amplitude xeg at the end of one cycle con-
sisting of evolution of the system from to to to 1 2t but
with 2p pulses applied at to 1 t and to 1 2t will be

xeg � iy���X�t����2e2idto ��2id� 1 o�y2� . (7)

The transition amplitude at the end of N such cycles
will be

xeg � iy
���X�t����2

�2id�

N21X
p�0

e22idtp2idto , (8)

which leads to the following result for the net transition
probability

p̃eg � jyj2 tan2

µ
dt

2

∂
sin2 ��� d

2 �2tN����
�d�2�2 . (9)

On using (2) we have one of our key results

p̃eg � tan2

µ
dt

2

∂
peg . (10)

We have thus proved that the application of a sequence
of 2p pulses on an auxiliary transition leads to the sup-
pression of an unwanted transition provided that the small
interval and the detuning d are chosen such that

tan2

µ
dt

2

∂
ø 1 . (11)

The suppression arises from a destructive interference
of the transition amplitudes [second and third terms in
Eq. (5)]. This destructive interference is due to a phase
change of the state jg� (and not of je�) by p due to the
application of the 2p pulse. This also explains our choice
of an auxiliary transition for the application of the 2p

pulse as we selectively want to produce a phase change so
that the interference can occur.

One might think that the procedure we describe is just
the quantum Zeno effect [13]. We emphasize that it is
not as we do not carry out repeated measurements and
our results are in the framework of the standard unitary
4272
evolution in quantum mechanics. The literature [14] on
foundations of quantum mechanics considers the collapse
of the state as an essential ingredient for quantum Zeno
effect. In fact, the collapse of the wave function became
such an issue that the authors of the important experiment
[15] on quantum Zeno finally commented “the experiment
neither verifies nor falsifies the notion of wave function
collapse” [15(b)].

Our proposed scheme on the inhibition of unwanted
transitions has similarities to the scheme of Itano et al.
[15], in the sense that pulses are applied on another tran-
sition. Further, our scheme shares some features with the
work of Viola and Lloyd [6] though there are differences
in the nature of the interaction with the bath and the way
the pulses are applied using the multilevel structure of the
atom. Note further that for N � 1 and small dt, p̃eg ~ t4,
whereas peg ~ t2, and thus one might say that to lead-
ing order in t2 the unwanted transition gets decoupled
(cf. Viola et al. in Ref. [6]).

We next demonstrate how the above procedure can be
used to possibly inhibit spontaneous emission. We show
the procedure schematically in Fig. 2. The atom makes a
transition from the excited state je� to the ground state
jg� by emitting a photon. The photon can be emitted
in any mode vk of the vacuum of the radiation field.
The polarization of the emitted photon will be determined
by the direction of the dipole matrix element. The interac-
tion Hamiltonian in the interaction picture is [4].

H1�t� � h̄
X
k

je� �gjgkake2idkt 1 H.c.;

dk � vk 2 veg .
(12)

For brevity, we do not display the polarization “s” and
vectorial indices of the mode. Thus k really stands for
�k, s�. In (12), ak is the annihilation operator for the mode
k of the radiation field. We now follow the procedure
leading to Eq. (9). We quote the results of calculations for

FIG. 2. Scheme for suppression of a decay into continuum
with the atom going from je� to jg� by the emission of a photon;
the other specification is the same as in Fig. 1.
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the transition probabilities with � p̃ge� and without �pge�
the application of 2p pulses

p̃ge �
X
k

jgkj
2 tan2

µ
dkt

2

∂
sin2�dktN�

�dk�2�2 , (13)

pge �
X
k

jgkj
2 sin2�dktN�

�dk�2�2 . (14)

We first note how (14) leads to the standard result and how
the Einstein A coefficient emerges. If t � 2Nt, then

≠pge�≠t �
X
k

2jgkj
2 sindkt

dk
(15)

which, under the assumption that the observation time t
is large compared to the width of �dk� values (which is of
the order of veg for spontaneous emission in free space),
reduces to the standard expression for the Einstein A
coefficient

≠pge�≠t � 2p
X

jgkj
2d�vk 2 veg� 	 A . (16)

We next examine the conditions under which the presence
of the quantum interference term tan2�dkt�2� in Eq. (13)
can lead to the suppression of spontaneous emission. Let
us consider a kind of one-dimensional model in which we
can replace (13) by

p̃ge 	
Z `

2veg

dx tan2

µ
xt

2

∂
sin2� x

2 2tN�
�x�2�2 r�x� , (17)

where r�x� is the density of states for the one-dimensional
vacuum. For r�x�, we can choose any of the functions like
the Lorentzian or the exponential

r�x� �
roG�p

�x2 1 G2�
or r�x� �

ro

2G
e2jxj�G (18)

with G ø veg and where ro is related to the square of
the dipole matrix element. Note that these choices corre-
spond to what are known as the “structured” vacua [16].
Thus we are essentially asking under what conditions the
emission into structured vacua can be inhibited. We use
the exponential model in (17) and show a typical result
in Fig. 3. For comparison we also show the result pge.
On comparing the two results we see that the use of a se-
quence of 2p pulses applied in the manner shown in Fig. 2
can suppress to a large extent the decay into a structured
continuum. We next consider briefly the question of spon-
taneous emission in free space. We convert (13) into an in-
tegral using the standard expressions for gk and letting the
quantization volume go to infinity. The transition proba-
bility p̃ge depends on the following integral:

I �
Z `

21
dx �x 1 1�3 tan2

µ
xt

2

∂
sin2� x

2 2tN�
�x�2�2 ,

x � �v 2 veg��veg, t ! vegt .
(19)

Note that the sine function is sharply peaked at x � 0
if 2Nt is large. This is what enabled us to simplify the
FIG. 3. A comparison of p̃ge (solid line) and pge (dashed line)
(in units of A�G) as a function of N . The short interval t is
taken to be one-half of the bath correlation time.

expression for pge leading to (16). However, we now have
the interference factor tan2�xt�2� which starts growing as
xt�2 ! p�2. Thus the idea of 2p-pulse induced slowing
down of decoherence will obviously work if the bath has
a cutoff such that tan2�xt�2� remains much smaller than
unity. In order to examine further the slowing down of the
decoherence we analyze the integrand Ĩ in (19). We can
rewrite the integrand in the form

Ĩ 	 �x 1 1�3 16 sin4�xt�2�
x2

∑
sin2�xtN�
sin2�xt�

∏
. (20)

Note that the integrand oscillates very rapidly due to the
term sin2�xtN�. Though it has no singularities as the
term in the square bracket is well behaved, it still grows
as N2 whenever xt � np. Such a growth problem can
be avoided if the vacuum mode frequencies are such that
xt ø p. If x is chosen to be of the order of unity, then
the pulses have to be applied at intervals much smaller
than v21

eg , which is almost impossible in the optical do-
main though not difficult for Rydberg transitions. For ex-
ample, for veg � 1011 sec21, t � 10211 sec, one should
use subpicosecond pulses for changing the phase by p.
Note that for applying 2p pulse one need not choose an-
other Rydberg transition. Here it might even be advanta-
geous to choose an optical transition. Note that with pulses
applied at intervals of the order v21

eg , the details of spon-
taneous emission become sensitive to the structure of the
bath as shown in Fig. 4. Even the result I0 in the absence
of pulses exhibits a weak dependence on the cutoff fre-
quency, though it can be shown to be approximately equal
to 4pNt which is consistent with the dashed curves in
Fig. 4. We note that Vitali and Tombesi [7] have exam-
ined the damping of a harmonic oscillator interacting with
a bath with cutoff �veg and have reached similar conclu-
sions. The nature of the integrand in (19) also suggests
that if the interval t . v21

eg , then we have the possibil-
ity of accelerating spontaneous emission (Fig. 4; curves
for vegt � p) which is suggestive of an effect that is
an analog of recently discovered quantum anti-Zeno effect
[17]. In conclusion, we have shown how a sequence of
4273
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FIG. 4. A comparison of I (solid lines) [Eq. (19)] and Io
(dashed lines) obtained by dropping tan function in the inte-
grand of Eq. (19) when we introduce a cutoff at x � 1. We
show results for vegt � 1 and p.

2p pulses applied on an auxiliary transition in a system
can slow down considerably the decay into a continuum
[18]. The same scheme also enables one to inhibit un-
wanted transitions.

The authors thank K. Kapale and S. Menon for preparing
the figures.
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