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Statistical Geometry in Scalar Turbulence

A. Celani and M. Vergassola
CNRS, Observatoire de la Côte d’Azur, B.P. 4229, 06304 Nice Cedex 4, France

(Received 6 June 2000)

A general link between geometry and intermittency in passive scalar turbulence is established. The
anomalous part of the scalar correlation functions is shown to be dominated by special functions of
particle configurations. Their major property is that those functions calculated along the particle trajec-
tories remain statistically constant in time. Those conservation laws qualitatively imply the persistence
of scalar particles in strongly clustered geometries.
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Scalar fields transported by turbulent flow occur in many
physical situations, ranging from the dynamics of the at-
mosphere and the ocean to chemical engineering (see, e.g.,
Ref. [1]). Specific examples are provided by pollutant den-
sity, temperature or humidity fields, and the concentration
of chemical or biological species. The advection-diffusion
equation governing the transport of the scalar field u is

≠tu�r, t� 1 �y ? =�u�r, t� � kDu�r, t� , (1)

where y�r, t� is the incompressible advecting flow and k

is the molecular diffusivity. Two broad cases are distin-
guished: active scalars, where y depends on u, e.g., by an
explicit relation y � y�u�, and passive scalars, where the
statistics of y is independent of u. Here, we shall be con-
cerned with the latter, although we conjecture that the physi-
cal mechanisms presented in the following are quite general
and relevant also for the active cases. The Fokker-Planck
equation (1) is associated with the Lagrangian dynamics
of tracer particles whose position r�t� obeys dr�t� �
y���r�t�, t��� dt 1

p
2k db�t�, where b�t� is the isotropic

Brownian motion [2]. Equation (1) governs the evolution of
the probability density of particles at position r and time t.

Scalar turbulence is typically generated by maintaining
a mean scalar gradient �u� � g ? r, e.g., by heating/cool-
ing devices in temperature field experiments. The notation
�≤� denotes the average with respect to the velocity statis-
tics, which is in principle arbitrary. We shall be interested
in flows with correlations having a nontrivial power law
behavior in the inertial range of scales r ø L, where L is
the velocity correlation length. Examples are provided by
the two and three dimensional Navier-Stokes turbulent flow
(see, e.g., Ref. [3]). A very robust feature of scalar turbu-
lence is its strong intermittency: rare strong events (such
as the sharp cliffs observed in Fig. 1) dominate the scalar
statistical properties. More quantitatively, intermittency
reflects in the anomalous scaling of the correlations. In
the inertial range, the scalar structure functions Sn�r� �
����u�r, t� 2 u�0, t����n� take the form

Sn�r� ~ rz dim
n

µ
L
r

∂z dim
n 2zn

, (2)

with a nonvanishing value of z dim
n 2 zn. Here z dim

n is the
value predicted by simple mean field dimensional argu-
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ments, e.g., of the Kolmogorov 1941 type. The positive
value of the anomalous correction z dim

n 2 zn reflects the
breaking of scale invariance: the scale L explicitly appears
in the inertial range expressions of scalar correlations, even
though r ø L. The phenomenon of intermittency is quite
generic for scalar turbulence and independent of the spe-
cific choice of y, including for Gaussian velocity fields
(see, e.g., Ref. [1]). Past research on intermittency has
mostly concentrated on phenomenological models making
vague contacts with the dynamics. Angular dependencies
and geometrical information about the correlations were
discarded. It is shown here that the whole structure of
multipoint correlations is, in fact, needed to achieve a real
dynamical understanding. Deviations of exponents from
naïve dimensional values turn out to be just by-products
of the nontrivial evolution of the figure geometry under
the Lagrangian dynamics. While the figure size grows ac-
cording to simple dimensional arguments, the evolution of
their shape is a more delicate issue. There are, in particular,

FIG. 1. A snapshot of the scalar field obtained by numerical
integration of (1) with advection by a two-dimensional turbulent
flow generated by an inverse energy cascade. The scalar turbu-
lence is maintained by a fixed temperature gradient �u� � g ? r,
with g oriented from right to left.
© 2001 The American Physical Society
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some special functions of the particle positions whose av-
erage with respect to the Lagrangian dynamics remains
constant in time. That is due to a delicate compensation
between the growth due to the figure size and the depletion
associated with the figure shape. Those statistically con-
served functions are dominating the behavior in the inertial
range and controlling the scalar field intermittency.

Specifically, the velocity field y considered here is a
two-dimensional turbulent flow generated by an inverse
energy cascade process [4]. This is a situation of inter-
est both for experiments [5,6] and in the atmosphere [7,8].
The flow realizes the type of turbulence theoretically pos-
tulated by Kolmogorov in 1941: it is isotropic, it has a
constant energy flux (but upscale), and it is scale invariant
with scaling exponent 1�3 [5,9]. A property of interest
to us is that the velocity is not intermittent. All non-
trivial scaling properties of the scalar field presented in
the following are therefore entirely due to the advection-
diffusion equation (1) and not mere footprints of the ve-
locity field. Details on the integration procedure used for
the numerical simulations of (1) with a mean gradient g
can be found in Ref. [10]. The single-time scalar statistics
at the stationary state is defined by the n-point correla-
tions Cn�r, t� � �u�r1, t� · · · u�rn, t��, where r denotes the
set r1, . . . , rn. For spatially homogeneous situations, Cn is
invariant under translations and it depends only on 2n 2 2
degrees of freedom, associated with the separation vectors
among the n points. In the inertial range, the velocity
scale invariance is expected to reflect in scalar correlations
Cn�r� behaving as power laws with respect to global size
variables, such as, e.g., the gyration radius of the set r.

Let us consider for simplicity the third order case n �
3. All the following arguments are easily generalized to
higher order correlations. The correlation function C3 de-
pends on the size, the orientation, and the shape of the tri-
angle defined by the three points r1, r2, and r3. The global
size variable can be defined as R2 � �r2

12 1 r2
23 1 r2

31��3,
where rij is the distance between the ith and the jth
particles. As shown in Fig. 2, in the inertial range of
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FIG. 2. The dependence of the third order correlation function
C3 with respect to the size of the triangle R. The straight line
is the power law behavior R1.25.
scales C3 depends on R as a power law with the expo-
nent z3 � 1.25. The hallmark of intermittency is in the
fact that z3 is smaller than the dimensional prediction 5�3
(see Ref. [1]). As for the shape and the orientation of
the triangle, we shall use the same Euler parametrization
as in Refs. [11,12]. Defining r1 � �r1 2 r2��

p
2 and

r2 � �r1 1 r2 2 2r3��
p

6, the shape of the triangle is
controlled by the two variables

x � 1�2 tan21

"
2r1 ? r2

�r2
1 2 r2

2�

#
; w � 2

jr1 3 r2j

R
. (3)

Some of the shapes associated with different values of x

and w are shown in Fig. 3. The global orientation of the
triangle with respect to the mean gradient direction g is
defined by the angle w. It is convenient to decompose
C3 on the orthogonal basis made of cos��w� and sin��w�.
Reversing the coordinates with respect to an axis parallel
or orthogonal to g statistically leaves the u field invariant
or inverts its sign, respectively. In the projection of C3,
the angular momentum � should therefore be odd and sine
functions are absent. Furthermore, the dominant contribu-
tion at the small scales is the one having the lowest angular
momentum (see Ref. [13] for the case of Navier-Stokes
turbulence). The correlation function C3 takes then the
form

C3�r� � Rz3f�x , w� cosw 1 . . . , (4)

where the dots stand for subdominant higher order har-
monics of the form cos�2� 1 1�w. The invariance under
arbitrary permutations of the three vertices of the triangle
allows one to reduce the phase space to 2p�6 , x ,

p�6, 0 , w , 1, and the function f in (4) is antiperiodic
in x with period p�3 [11,12]. The measured dependence
of f on the shape coordinates x and w is shown in Fig. 3.
The maximum of f is realized at x � 0, w � 0, where
two of the three particles are stuck together. For equilat-
eral triangles (w � 1) or for the “dumbbell” configuration
x � p�6, w � 0, the symmetries enforce f � 0.

Let us establish the connection with the Lagrangian dy-
namics. That is done by replacing the Eulerian variables

FIG. 3. Contour lines in the x 2 w plane of the third order
shape function f appearing in (5).
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r in the argument of C3 by their Lagrangian evolutions
r�t�, with r�0� � r. The resulting object is a stochastic
function whose average with respect to the Lagrangian tra-
jectory statistics is denoted by �≤�L . More generally, for
a generic function f�r� of the n points ri we can define
its Lagrangian average as

�f�t��L �
Z

f�r�Pn�t,rj0, r� dr . (5)

Here the n-particle propagator Pn�t,rj0, r� denotes the
probability that, being in r at time 0, the n particles are
in r at time t. In a turbulent Kolmogorov flow, distances
typically grow with time as jtj3�2, whose special instance is
the celebrated Richardson law �r2

12�L �t� ~ jtj3 for the dis-
tance r12 between two particles. For functions f, homo-
geneous of positive degree s, that is, f�lr� � lsf�r�,
the Lagrangian average will therefore grow as jtj3s�2.

The dimensional expectations à la Richardson are indeed
satisfied for generic functions. Intermittency is dynami-
cally originated by blatant exceptions to the aforemen-
tioned behaviors: the anomalous part of the correlation
functions has a constant Lagrangian average, as clearly
demonstrated in Fig. 4 for the third order case. Those pre-
served functions are the statistical integrals of motion re-
sponsible for the breaking of scale invariance associated
with intermittency. The other important point is that their
constancy is tightly related to the geometry of the figures
identified by the Lagrangian particles. Figure 4 indicates
indeed that the size factor Rz3 grows as jtj3z3�2. The La-
grangian average of C3 remaining constant, the shape part
f�x , w� cosw in (4) must compensate for the growth of the
figure size. As shown in Fig. 3, the function f decreases
going from degenerate triangles with two of the vertices
close to each other to triangles with aspect ratios of or-
der unity. The geometrical meaning of anomalous scaling
laws is then quite clear : the smaller the z3, the slower is the
compensation needed from the shape factor and the longer
degenerate triangle configurations persist. In other words,
“stronger intermittency � subgroups of particles staying
longer close to each other.”
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FIG. 4. The Lagrangian average of the correlation function
�C3�L . For comparison, also shown is the evolution of the av-
erage �Rz3 �L � jtj�3�2�z3 that obeys the dimensional scaling law.
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Systematic support to the previous physical ideas can be
provided in the special case where the advecting velocity
in (1) has a short correlation time, the so-called Kraichnan
model [14]. The assumption is, of course, far from realis-
tic, but it leads to the peculiar property that the n-particle
propagators Pn in (5) obey closed Fokker-Planck equations
[15] (see also Ref. [1]). The statistically preserved func-
tions are now identified as zero modes of the n-particle
Fokker-Planck operator [16–18]. Their anomalous scal-
ing behavior could be calculated in some perturbative lim-
its [16–18] or measured numerically [19,20]. Zero modes
enter the Pn’s via the asymptotic expansion [21] (see also
Ref. [22]):

Pn�t,rj0, lr� �
X
i,q

lsi,q fi,q�r�ci,q�t,r� , (6)

valid for small l’s. Zero modes are the q � 0 terms in (6),
and they are ordered according to their scaling dimension
by the index i. Higher q’s identify the so-called slow
modes, whose Lagrangian average is growing as an integer
power of time, although with an exponent smaller than the
dimensional one 3si,q�2.

A simple example of slow mode for the inverse cascade
flow is provided for n � 2. The Lagrangian average of �g ?

r12� is preserved as its time derivative is proportional to
��y1 2 y2�� � 0. The first slow mode associated with it is
given by the function �g ? r12�r2�3

12 . Figure 5 shows indeed
that its Lagrangian average grows as jtj, much slower at
large times than the dimensional law jtj5�2.

What is the degree of generality of the Lagrangian
preservation mechanism for intermittency and the expan-
sion (6)? The crucial property of the Kraichnan velocity
field is its short correlation time (this ensures that the
Lagrangian trajectories are Markovian). For the inverse
energy cascade flow considered here this property is lost
as the correlation time is finite. The numerical results
presented here give therefore a strong indication that the
basic mechanisms for scalar intermittency are quite robust
and generic. Changing the statistics of the flow affects
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FIG. 5. The Lagrangian average of the anisotropic slow mode
�g ? r12�r2�3

12 vs time.
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only quantitative details, such as the numerical value of
the exponents or the precise shape of the Lagrangian pre-
served functions. The expansion (6) is analogous to those
encountered in many-body statistical problems [23] and
controls the small-scale behavior of scalar correlations.
Indeed, it follows from (1) that the scalar is preserved
along the Lagrangian trajectories. Scalar correlations can
then be expressed as

Cn�r, t� �
Z

Pn�2t,rj0, r� �g ? r1� . . . �g ? rn� dr .

(7)

Inserting (6) into (7) it is evident that the behavior at small
scales is a superposition of the functions fi,q.

Two general remarks on scalar turbulence follow. First,
changing the initial condition g ? r (or the injection
mechanism in the forced case) modifies the constants but
not the scaling exponents in the correlation functions. This
naturally explains the universality properties of scalar tur-
bulence observed in Ref. [10]. Second, all fewer-particle
modes fi,q, i.e., those depending on m , n variables,
appear in the expression for Cn. Their Lagrangian aver-
ages with respect to the evolution of the m particles or
the whole set of n particles are indeed trivially coincid-
ing. Note, however, that structure functions satisfy the
trivial identity Sn�r� �

Rr
0 . . .

Rr
0 ≠r1 . . . ≠rn Cn�r� dr . All

m-particle modes will therefore drop out from the nth
order structure function. This clearly illustrates a point
previously mentioned: the apparent simplification of the
single distance r left in structure functions is purely illu-
sory as their anomalous scaling laws are still dynamically
associated with n-particle geometries.

In conclusion, we have shown that the origin of intermit-
tency in scalar turbulence is due to the existence of statisti-
cal conservation laws. The anomalous parts of correlation
functions are indeed preserved under the Lagrangian dy-
namics. That is due to subgroups of particles remaining
close to each other for unexpectedly long times, pointing to
applications for the reaction rate enhancement in the trans-
port of chemically reactive species. The results presented
here indicate that the presence of preserved functions and
their relation to intermittency should be quite general. It
would be of interest to further check the issue for three-
dimensional scalar turbulent fields.
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