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Scale Dependent Dimension of Luminous Matter in the Universe
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We suggest a geometrical model for the distribution of luminous matter in the Universe, where the
apparent dimension, D�l�, increases linearly with the logarithm of the scale l. Beyond the correlation
length, j, the Universe is homogeneous, and D � 3. Comparison with data from the SARS redshift
catalog, and the LEDA database provides a good fit with a correlation length j � 300 Mpc. This type
of scaling structure was recently discovered in a simple reaction-diffusion “forest-fire” model, indicating
a broad class of scaling phenomena.
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Uniformity of the background radiation requires that
the Universe must be homogeneous at the largest scale;
this is known as the cosmological principle. However, a
decade ago, Coleman and Pietronero [1] suggested that
the Universe, at length scales L up to a couple of Mpc,
is fractal with fractal dimension, D � 1.2, based on a
study of the CfA galaxy catalog. Subsequent studies
seemed to confirm this picture: Guzzo et al. [2] found
D � 1.2 for L � 1 3 Mpc, increasing to D � 2.2 for
L � 3 10 Mpc, from the Perseus-Pisces catalog. Mar-
tinez and Coles [3] found that the dimension gradually
increases from 2.25 to 2.77 at length scales increasing
from 1–50 Mpc. These empirical studies have recently
been reviewed by Wu et al. [4]. Even though there is
general agreement about the existence of fractal galactic
structures at moderate scales, there is still intense debate
on whether or not the Universe is homogeneous at very
large scales. If the Universe indeed becomes homoge-
neous, the question arises as to how the transition takes
place [5,6]. The value of the homogeneity length scale and
the matter distribution for smaller scales have important
cosmological consequences.

We propose that the distribution of luminous matter in
the Universe can be described by a new geometric scaling
form that we discovered recently [7] in a different context.
This description leads to a reconciliation of observational
data at various scales. A sharp transition to homogeneity
at 300 Mpc is predicted.

We studied a simple nonequilibrium reaction-diffusion
“forest-fire” model [8,9], proposed to capture the essen-
tial features of turbulent systems, where energy is injected
at the largest scale and dissipated at a small length scale.
In a range of length scales between these two limits the
dimension of the luminous field (fire distribution) varies
gradually from zero to three. The distribution becomes
homogeneous beyond a correlation length which depends
on the energy injection rate. The model operates near a dy-
namical “critical point,” with diverging correlation length.
As we will show below, analysis of galaxy maps indicates
that the geometrical structure of luminous matter in the
Universe is very similar to that of the forest-fire model. We
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compare the actual distribution of luminous matter with the
statistical properties of snapshots in the steady state of the
forest-fire model.

While we hesitate to claim that the Universe should be
viewed as one giant forest fire, we do suggest that the di-
mension dependent scaling picture may be a quite generic
and robust geometrical form for dissipative turbulent
systems. The underlying picture could be one where the
galactic dynamics is turbulent, with stellar objects interact-
ing with one another in reaction-diffusion-type processes
through shock waves, supernovae explosions, galaxy
mergers, etc. Moreover, it has been suggested that such
reaction-diffusion processes may indeed be responsible
for structure formation in the Universe, at least at smaller
scales [10]. In any case, the similarity is appealing in
that it suggests that the luminous matter in the Universe
shares the basic characteristic features of other dynamical
systems.

Usually, systems near criticality are self-similar, or frac-
tal, for length scales below the correlation length; hence
fractal behavior can often be viewed as a consequence of
criticality [11]. However, the forest-fire model does not
show self-similar scaling below the correlation length. Nu-
merical studies show that the average amount of dissipation
n�l�, within a cube box of size l that contains dissipation,
obeys
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where l0 � 1 is the lattice spacing for the forest-fire model
and c is a constant. The formula is valid for lengths
smaller than the correlation length j, where there is a sharp
crossover to a homogeneous 3D structure.

The equation can be interpreted in terms of an apparent
fractal dimension that varies linearly with the logarithm of
the length scale:
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The length scale dependent behavior observed in this
model may be sufficiently general that it is worthwhile
to make a detailed comparison with astronomical data.
Apart from an overall amplitude, there are only two fitting
parameters in our proposed galaxy distribution, both have
clear geometrical interpretation: beyond the upper length
scale j, the distribution becomes uniform; at the lower
cutoff, l0, the distribution becomes pointlike.

In their seminal work, Sylos Labini et al. [12] analyzed
several database catalogs of galaxy maps. From these
databases, they created volume-limited samples containing
all galaxies exceeding a certain absolute luminosity within
a given volume. Then they calculated the conditional den-
sity G��l�, which is the average density of galaxies within
a sphere of size l. This quantity corresponds to the density
n�l� defined above, divided by the volume l3. Thus, the
resulting prediction for G��l� becomes
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Namely, on a log-log plot there is a quadratic dependence
on log�l�l0� rather than the linear dependence found for
self-similar fractal structures.

We have fitted Eq. (3) to the conditional densities
extracted by Pietronero et al. from two widely different
databases, with consistent results. The LEDA database is
a heterogeneous compilation of data from the literature
containing more than 200 000 galaxies. The Stromlo-APM
redshift survey (SARS [13]) consists of 1797 galaxies.
Figure 1 shows results from the fits, with two different
cutoffs for the LEDA database. The labeling follows
Sylos Labini et al., with the numbers representing the
lower luminosity cutoffs. Obviously, there are larger
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FIG. 1. Conditional average densities for various galaxy cata-
logs (arbitrary scale), as derived by Sylos Labini et al. [12],
compared with fits to Eq. (1), yielding j � 271 Mpc from the
LEDA16 data, j � 255 Mpc from the LEDA14 data, and j �
389 Mpc from the APM data. The broken line is a conventional
fit to Eq. (4) with g � 1.3, r0 � 10 Mpc.
4216
fluctuations for the sparser, but perhaps higher quality,
Stromlo-APM data set than for the LEDA database.

The fits are very good in view of the fact that the only
fitting parameters are the upper and lower length scales,
j and l0, respectively. In contrast to conventional self-
similar critical phenomena, the correlation length enters
the expression for length scales below the correlation
length. We are therefore able to measure the correlation
length from data taken from our local corner of the
Universe, despite the fact that no data are available, as
yet, at and beyond the projected correlation length.

The upper length scale is the one where the curves be-
come flat, corresponding to the apparent dimension D �
3. The three fits yield very consistent values of this
length scale, j � 271 6 32 Mpc from the LEDA16 data,
j � 255 6 80 Mpc from the LEDA14 data, and j �
389 6 220 Mpc from the APM 18 data. The errors in the
logarithm of the data points,

p
x2, are 0.037, 0.046, and

0.145 for the three data sets, respectively. The correlation
length is much smaller than the Hubble radius, so we can
essentially view the observed density as recorded at an in-
stant in time, making the equal time correlation function
n�l� for the forest-fire model the proper statistical quantity
to compare with.

The logarithmic scale dependence of the dimension can
be seen directly by replotting the data in Fig. 1. Fig-
ure 2 shows the scale dependence of the dimension D�l� �
2�logG��l��G��l0��� log�l�l0� 1 3. All data sets yield lin-
ear behavior. The correlation length is found by linear
extrapolation to the point where D�l� assumes the value
of 3. The dimensions derived from the intense galax-
ies, LEDA16 and APM 18, are essentially identical, but
the LEDA14 data yield a somewhat steeper scale depen-
dence. However, they all converge at almost the same
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FIG. 2. Scale dependent dimension D�l� derived from the data
points in Fig. 1 as explained in text. We conjecture that future
data points will follow the straight lines and saturate sharply to
D � 3 at the correlation length.
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homogeneity length. Figure 2 clearly shows that the dis-
tribution is not fractal, since this would imply a constant
D�l� over a range of length scales l.

We predict a sharp crossover to uniformity, i.e., a sharp
kink in the curve, at the correlation length, which will be
observable once data become available, presumably within
the next decade. Actually, there is a recent analysis based
on the ESO Slice Project galaxy redshift survey which
indicates that the fractal dimension is close to 3 for the
length scale greater than 300 Mpc [14]. Also, the interme-
diate data points are predicted to follow the straight lines
in Fig. 2.

The lower cutoff, l0, is the scale at which the slope of the
extrapolated curves in Fig. 1 assumes the value of 23. We
find l0 � 400 light years, l0 � 4000 light years, and l0 �
400 light years for the three samples, respectively. This is
comparable with the smallest intergalactic distances. This
scale is determined with less precision than the correlation
length j. It is not clear how well (if at all) our scaling
form applies to the analysis of the galaxy distribution at
small length scales.

The geometry of the luminous set is not fractal when
viewed over the entire range of scales, since there is no
self-similarity for different scales. It is not homogeneous
either. The scale dependent dimension has a clear geo-
metrical interpretation: At small distances, the Universe is
zero dimensional and pointlike. Indeed, energy dissipation
takes place on individual pointlike objects, such as stars
and galaxies. At distances of the order of 1 Mpc the dimen-
sion is unity, indicating a filamentary, stringlike structure;
when viewed at larger scales it gradually becomes
2-dimensional wall like, and finally at the correlation
length, j, it becomes uniform.

It might be instructive to compare with more conven-
tional interpretations of the large scale structure [15]. The
conditional density can be related to a correlation function
g�r� for the overdensity through [12]

G��l� � �n� �1 1 g�l�� , (4)

where �n� is the mean density of galaxies. For instance,
the field theory of de Vega et al. [16] yields an expression
of this form. The overdensity g�l� is often assumed to be
of the form g�l� � �r0�l�g .

Figure 1 also shows a fit to this expression, with r0 �
10 Mpc and g � 1.3. The fit is clearly inferior, flattening
out at too small of length scales. The logarithmic error is
0.176, compared to 0.037 for our fit. This is in accordance
with the observations by Sylos Labini et al. that the value
of the fitted parameter r0 depends heavily on the range
of length scales used. At larger scales, the difference be-
tween the two fits is even more pronounced; when further
data become available in the near future, one should be
able to discriminate even better between the two pictures.
In this traditional view, there is a smooth crossover to ho-
mogeneity when the amplitude of the overdensity, r0�l,
reaches unity. In contrast, within our picture the transition
takes place when the length scale reaches the correlation
length. One can trivially convert our result for correlation
function, both for the Universe and the forest-fire model,
to an expression for g�l�, by combining Eqs. (3) and (4).
However, the resulting expression is complicated and un-
appetizing; it cannot be expressed by a simple power law.

In the conventional formulation, one usually visualizes
that the amplitude r0 of the power-law fluctuations in-
creases with time, starting from the time of the decoupling
of radiation from hadronic matter. In our phenomenol-
ogy, it would be the correlation length j that increases
with time, describing a universe with decreasing density.
It would be interesting to compare our conjectured struc-
ture with numerical simulations, based for instance on cold
dark matter models of the evolving Universe.

The novel geometrical scaling form has some important
cosmological consequences. One can estimate the correla-
tion length from data measured for distances shorter than
the correlation length, in contrast to conventional critical
phenomena. This allows us to estimate the average den-
sity of galaxies in the entire Universe, since this is equal
to the density, Eq. (1), within the correlation length, i.e.,
�n� � G��j� � c�j3�2. From the fit to the APS 18 data
we find that the density of galaxies with absolute luminos-
ity greater than 18 is �n� � 3 3 1024 Mpc23. Assuming
the size of the Universe to be 3000 Mpc this implies that,
for instance, the total number of galaxies with luminos-
ity greater than 18 is predicted to be approximately 107.
Traditional fits to Eq. (4) give much larger values for the
density of galaxies in the Universe, depending on the range
of length scales used in the fit [12].
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