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Does Matter Wave Amplification Work for Fermions?
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We discuss the relationship between bosonic stimulation, density fluctuations, and matter wave grat-
ings. It is shown that enhanced stimulated scattering, matter wave amplification, and atomic four-wave
mixing do not require macroscopic occupation of a single quantum state. These processes are in principle
possible for fermionic or nondegenerate samples, if they are prepared in a cooperative state. In practice,
there are limitations due to short coherence times.
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Introduction.—The realization of Bose-Einstein con-
densation in atoms has made it possible to study the
phenomenon of bosonic stimulation for massive particles.
Superradiance of atoms [1], four-wave mixing [2], and
matter wave amplification [3,4] were described as pro-
cesses which are bosonically stimulated, i.e., their rates
are proportional to �N 1 1�, where N is the number of
identical bosons in the final state. These experimental
achievements have raised the question of whether these
processes are inherently connected to bosonic systems.

We have recently pointed out that atomic superradiance
does not depend on Bose-Einstein statistics and would oc-
cur for thermal atoms or even for fermions, although with
much shorter coherence times [1], and similar arguments
should apply to four-wave mixing. These suggestions have
stirred a controversy among researchers. This note will
reconcile the different physical descriptions. The central
result is that the stimulated processes mentioned above do
not rely on quantum statistics, but rather on symmetry and
coherence.

In this note, we identify clearly the physical process
behind bosonically stimulated scattering. We show that
the presence of a macroscopically occupied state increases
the density fluctuations of the system, and bosonically en-
hanced scattering is simply the diffraction of particles from
these density fluctuations. The first parts of this paper es-
tablish the equivalence of bosonically enhanced scattering,
diffraction, and superradiance, which will then be applied
to fermionic systems.

Scattering theory.— It is useful to summarize basic
aspects of the theory of scattering of light or particles
from an arbitrary system. These textbook results simply
follow from lowest order perturbation theory (Fermi’s
Golden Rule). The double differential cross section can be
decomposed into two factors d2s

dVdv � � ds

dV �singleS�q, v�.
The first one is the differential cross section for the
scattering by a single particle (e.g., the Rayleigh cross
section for far-off resonant light scattering), the second
one is the dynamic structure factor (van Hove or scat-
tering function) S�q, v� which is the Fourier transform
of the density-density correlation function: S�q, v� �
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�1�2p�
R

dt eivt�r̂�q, t�r̂y�q, 0�� where r̂�q� is the
Fourier transform of the particle density operator (see,
e.g., [5]).

For a noninteracting system of bosons, S�q, v� can be
expressed using the single-particle states ji� with energy
Ei and occupation numbers Ni:

S�q, v� � S0�q�d�v� 1
X

ifij

j� jjeiqr ji�j2Ni�Nj 1 1�

3 d�v 2 �Ej 2 Ei��h̄� . (1)

The factor �Nj 1 1� reflects bosonic stimulation by the
occupation of the final state. The elastic term S0�q� de-
scribes coherent elastic scattering or diffraction and is sim-
ply the square of the Fourier transform of the density
S0�q� � j�ry�q��j2 � j

P
Ni�ijeiqr ji�j2.

A simple example.— It is instructive to apply this
formalism to a system of noninteracting bosons which
has macroscopic occupation in two momentum states
with momentum 6h̄k. If the initial state is a Fock state
j1k�N1 j2k�N2 , we find that, apart from forward scat-
tering, the dominant term in S�q, v� is the bosonically
enhanced scattering between those two (degenerate) states,
S�q, v� � �N2dq,0 1 N1�N2 1 1�dq,22k 1 N2�N1 1

1�dq,2k�d�v� where the Kronecker symbol dq,p implies
q � p within the wave vector resolution �1�L of a finite
volume with length L. Alternatively, we can assume the
initial state to be a coherent superposition state ji�N with
the eigenstate ji� � c1j1k� 1 c2j2k� and jc6j

2 �
N6�N and N � N1 1 N2. Now, the dominant con-
tribution to S�q, v� comes from S0�q� � N2dq,0 1

N2jc1j
2jc2j

2�dq,2k 1 dq,22k� which is equivalent to the
Fock state case when the difference between N6 and
N6 1 1 can be neglected in the limit of large occupation
numbers.

This equivalence between Fock states and coherent su-
perposition states has been extensively discussed in the
context of two interfering Bose-Einstein condensates [6–8]
and also with regard to optical coherences [9]. Those pa-
pers show that, in many situations, a Fock state is equiva-
lent to an ensemble of coherent states with arbitrary phase.
© 2001 The American Physical Society 4203



VOLUME 86, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 7 MAY 2001
Experimental interrogation determines the phase and re-
duces the ensemble to a single coherent state with a phase
which will vary from experiment to experiment. For large
occupation numbers, one can therefore regard the Fock
state as an initial state which has not yet “declared its
phase,” and, in many cases, for the convenience of calcu-
lations, replace the Fock state by a coherent superposition
state with an arbitrarily chosen phase.

However, on first sight, the physical interpretation is dif-
ferent. In the Fock state formulation, the enhanced scat-
tering results from a macroscopic occupation number in
a single quantum state, whereas for the coherent superpo-
sition state, the scattering is simple diffraction by a sinu-
soidally modulated density distribution with an amplitude
proportional to N jc1c2j. This density modulation acts
as a diffraction grating for incident light or particles and
has a diffraction efficiency proportional to the square of
the amplitude. Such a density modulation does not re-
quire bosonic atoms. It can, for example, be imprinted into
thermal or fermionic clouds by subjecting them to a suit-
able optical standing wave. The equivalence of these two
descriptions points towards one of the major conclusions
of this paper, namely macroscopic population of bosonic
states is not necessary for enhanced scattering.

The previous discussion assumed scattering between
two degenerate momentum states j6k�. A simple Galilean
transformation generalizes this to two arbitrary momen-
tum states jk6� with energies E6. Now the standing wave
moves with a velocity h̄�k1 1 k2��2m where m is the
mass of the atoms, and the enhanced scattering appears at
h̄v � 6�E1 2 E2� instead of at v � 0.

Enhancement of fluctuations.—The general results
of statistical physics presented above emphasize that
enhanced scattering must be related to enhanced density
fluctuations. Therefore, bosonic enhancement of a scatter-
ing rate is either due to a density modulation �r�q�� (in
the coherent superposition description) or due to density
fluctuations (in the Fock state description)— the latter can
be regarded as a density modulation with an unknown
phase. This relation allows a more intuitive answer to the
question of why there is bosonic enhancement when two
atoms 1 and 2 collide in the presence of a condensate with
N0 atoms. The standard answer would be that the sym-
metry of the wave function enhances the scattering rate
into the condensate and into some other state 3 by a factor
of �N0 1 1�. An equivalent answer is that the condensate
interferes with atom 2 (or 1) and creates a density grating
with an amplitude proportional to N

1�2
0 , which diffracts

atom 1 (or 2) into state 3. The grating absorbs this mo-
mentum transfer by transferring the atom in state 2 (or 1)
into the condensate. Therefore, bosonic stimulation can be
regarded as heterodyne amplification of density fluctua-
tions where the condensate acts as the local oscillator.

Dicke superradiance.—We now want to establish the
connection between bosonic enhancement and Dicke
superradiance. This will formally introduce the enhance-
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ment factor �N 1 1� for nonbosonic systems. A system of
N atoms in two states j6� is conveniently described with
the formalism introduced by Dicke to discuss superradi-
ance in two-level atoms [10]. It should be emphasized that
the only assumption in this treatment is that the N atoms
couple identically to the probe field (the electromagnetic
field or some incident particle beam), i.e., that they have
the same transition frequency and matrix element without
any assumption of quantum statistics. For example, in
magnetic resonance experiments, the Dicke treatment
would apply to different atomic species with the same
value of the magnetic moment.

Dicke regarded the two-level atom as a spin 1�2 sys-
tem and introduced angular momentum quantum num-
bers. In this subspace, a fully symmetric state of N atoms
has spin s � N�2 and magnetic quantum number m �
�N1 2 N2��2. The squared matrix element for the tran-
sition js, m 6 1� ! js, m� induced by the ladder operator
S7 is �s 6 m 1 1� �s 7 m�. Expressing this by initial oc-
cupation numbers N6, one obtains N6�N7 1 1� [11–13],
retrieving the formula of bosonic enhancement. For a
given N and m, the transition rates are largest for the state
with s � N�2 which is therefore called the state of maxi-
mum cooperativity.

Such a system will couple to the probe field in a super-
radiant way (i.e., with an up to N times enhanced transition
rate). In the Bloch vector picture, its dynamics is described
as the precession of a macroscopic spin vector with length
s � N�2. This spin vector decays in a time 1�G where G

is the total (homogeneous and inhomogeneous) linewidth
of the transition j1� ! j2�. Collective superradiant be-
havior can be observed only at times shorter than 1�G.

Matter wave gratings and fermions.—Dicke’s formal-
ism is usually applied to one-photon transitions between
internal states, but here we use it to discuss scattering,
i.e., a two-photon transition between two momentum states
jk6�. Let us first assume that we have an ideal Bose-
Einstein condensate in the k � 0 momentum state. Light
scattering between momentum states k � 0 and k � q has
an infinite coherence time for a noninteracting condensate
of infinite size (Fig. 1a). For a thermal (nondegenerate)
cloud of atoms with thermal momentum spread h̄kth ø
h̄q the transition frequencies for the transfer of momentum
h̄q are Doppler broadened by G � h̄kthq�m. For times
shorter than 1�G the system will behave collectively like
the Bose condensed system, i.e., a probe beam would in-
duce transitions between the k � 0 and k � q momen-
tum states at a rate proportional to Nk�0�Nk�q 1 1� where
Nk�0,q refers to the total number of atoms in states with
momentum around k � 0, q.

Once we have distributed the particles over many initial
states, indistinguishability and quantum statistics do not
play any role. Therefore, the only modification for a Fermi
degenerate cloud is to replace kth with the Fermi wave vec-
tor kF in the expression for the inhomogeneous broadening
(Fig. 1b). Because of the assumption h̄kF ø h̄q, Pauli
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FIG. 1. Momentum transfer �q (a) to a Bose-Einstein conden-
sate, (b) to a Fermi sea, and (c) to a momentum squeezed de-
generate Fermi cloud. Shown are the populated states vs the k
vector. The momentum spread kF of the Fermi sea introduces
Doppler broadening of the transition and a finite coherence time,
whereas the coherence times in (a) and (c) are much longer due
to small momentum spreads in the z direction and could in prin-
ciple be infinite.

blocking due to scattering into already occupied states is
absent. If this assumption is not made, a part of the cloud
becomes inactive, and our discussion would apply only to
the atoms near the Fermi surface.

The previous paragraph generalized the bosonic Fock
state ensemble to nondegenerate and fermionic clouds. We
now come back to the coherent superposition state. For
bosons, it can be produced from a Bose-Einstein conden-
sate in the �k � �0 state by applying a (so-called Bragg)
pulse of two laser beams which differ in wave vector by �q
and in frequency by the recoil frequency h̄q2�2m. Those
beams resonantly drive the transition between momentum
states �k � �0 and �k � �q [14,15] and prepare the super-
position state discussed above. Similarly, in a thermal (or
fermionic) cloud, the Bragg pulse creates a modulated den-
sity distribution with wavelength 2p�q which has the same
contrast as in the bosonic case and will diffract light or
atoms at the same rate. However, due to the thermal mo-
tion with velocity h̄kth�m, this grating decays during a
time m�h̄kthq � 1�G (for the fermionic case, kF has to
be substituted for kth� . Thus the Dicke picture and the
diffraction picture agree.

Coherence time.—The Doppler broadening discussed
above seems to imply a fundamental limit to the coherence
time of a Fermi system. However, at least in principle,
one can prepare a Fermi system with infinite coherence
time by starting out with a cloud which is in a single
momentum state along the ẑ axis, but occupies many
momentum states along x̂ and ŷ. With a Bragg pulse trans-
ferring momentum qẑ, one can prepare a system which
shows collective behavior for scattering particles or light
with momentum transfer qẑ with an infinite coherence
time (Fig. 1c). Therefore, there is no direct connection
between a long coherence time and a high phase-space
density. In this ensemble, the scattering is between
the states jkz � 0� ≠ jkx , ky� and jkz � q� ≠ jkx , ky�.
Therefore, we have enhanced scattering into the jkz � q�
quantum state, but the atoms may differ in other quantum
numbers. What matters is only the symmetrization of the
many-body wave function along ẑ. The other quantum
numbers ensure that there is no conflict with the Pauli
blocking for fermionic systems. This is analogous to the
separation of electronic wave functions into a symmetric
part (e.g., the spin part) and an antisymmetric part (e.g.
the spatial part) where the coupling to an external field
(e.g., electron spin resonance experiment) depends only
on the symmetric part.

Experiments.—The experiments both on superradiance
[1] and four-wave mixing [2] in Bose-Einstein condensates
have in common that a matter wave grating formed by two
macroscopically occupied momentum states is probed, ei-
ther by light or by atoms. Both experiments create the co-
herent superposition state discussed above using a Bragg
pulse. In the limit of low intensity of the probe beam, the
scattering is independent of the nature of the probe par-
ticles —one could have used any kind of radiation, bosons
or fermions [16]. The bosonic stimulation observed in both
experiments demonstrates the dynamic nature of the matter
wave grating. Each time a particle or photon is diffracted,
the amplitude of the grating grows.

In practice, it is difficult or impossible to carry out these
experiments with fermions or thermal atoms. When we
observed superradiance of a condensate, we could not ob-
serve similar behavior above the BEC transition tempera-
ture since the threshold laser intensity for superradiant gain
is several orders of magnitude higher (see Ref. [1] for de-
tails). Furthermore, the superradiance may be suppressed
by heating or other decoherence processes. The shorter co-
herence time for non-BEC samples should be even more
crucial for the four-wave mixing experiment where the
matter wave grating is probed by very slow atoms which
have a long transit time of about 1 ms through the sample.
Another concern is incoherent scattering of the probe par-
ticles which accompany the stimulated processes discussed
so far. Since the incoherent processes scale linearly with
the number of atoms, whereas the stimulated process is
proportional to N2, there is in principle always a regime
where the stimulated process dominates [17].

Discussion.—Coming back to the initial question: Is
matter wave amplification possible for fermions? The an-
swer is yes, if the system is prepared in a cooperative state
and the amplification occurs in a time shorter than the co-
herence time. However, this amplification does not pile up
atoms in a single quantum state, but rather in states which
are in the same (or approximately the same) momentum
state along ẑ, but differ in other quantum numbers. There-
fore, this amplification can be regarded as amplification of
a density modulation or as amplification of spatial bunch-
ing of atoms. Alternatively, one can regard the density
modulation as a collective excitation of the system which
involves bosonic quasiparticles (e.g., phonons). Superradi-
ance and four-wave mixing (both with bosons and fermi-
ons) can then be ascribed to bosonic stimulation by those
quasiparticles.

The phase-coherent matter wave amplification for fer-
mions would start with a short Bragg pulse which puts
4205
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some of the atoms into a recoil state which is then ampli-
fied. This superposition of two momentum states creates a
matter wave grating. This can be regarded as the interfer-
ence pattern of each atom with itself with all the individual
interference patterns being exactly in phase. Matter wave
amplification occurs when a single laser beam is diffracted
off this grating, increasing the amplitude of each atom to
be in the recoiling state. Therefore, the matter wave am-
plification scheme of Refs. [3,4] would work for fermions,
provided the whole process can be done in the short co-
herence time of the fermionic matter wave grating.

Of course, there is a fundamental difference between
bosons and fermions which is reflected in the symmetry
of the total wave function. A bosonic system with two
macroscopically occupied quantum states is always in a
fully symmetric and maximally cooperative state. In other
words, if two independent Bose condensates cross each
other, there is always a macroscopic interference pattern
(as observed experimentally [18]), which is reflected in
S�q, v� being proportional to N2 (or to N1N2, to be more
precise). It is this density modulation which can be am-
plified by the dynamic diffraction discussed in this paper.
If two beams of fermions overlap, there is no macroscopic
interference, unless the two beams were prepared in a sym-
metric way, e.g., by generating one of the beams by a
Bragg pulse from the other one.

Our discussion of scattering without change of the inter-
nal state can be generalized. For example, if atoms scatter
into the condensate through a spinflip process, the den-
sity grating has to be replaced by a polarization or coher-
ence grating. Such gratings were experimentally studied
for laser-cooled atoms in Ref. [19].

This paper has focused on bosonically enhanced scat-
tering. Similarly, bosonic enhancement of spontaneous
emission can be equally well described by a cooperative
initial state without invoking quantum statistics. For scat-
tering, the relevant coupling strength is density fluctuation.
For spontaneous emission, it is the electric dipole moment.
Both are enhanced by the presence of a Bose condensate,
in the latter case because the excited atom corresponds to a
Dicke vector of spin s � N�2, m � 2N�2 1 1�2 which
couples more strongly to the vacuum fluctuations of the
electromagnetic field than an individual atom.

In conclusion, we have shown that bosonically enhanced
scattering is related to density fluctuations and matter
wave gratings. The analogy with Dicke superradiance
emphasizes that matter wave amplification and atomic
4206
four-wave mixing are possible for fermionic or nondegen-
erate samples if they are prepared in a cooperative state
which shows coherent and collective behavior.
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Note added.—After submission of this paper we learned
of similar work by Moore and Meystre [20] which agrees
with our conclusions.
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