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Atomic Four-Wave Mixing: Fermions versus Bosons
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We compare four-wave mixing in quantum degenerate gases of bosonic and fermionic atoms. We find
that matter-wave gratings formed from either bosonic or fermionic atoms can in principle exhibit nearly
identical Bragg scattering and four-wave mixing properties. This implies that effects such as coherent
matter-wave amplification and superradiance can occur in degenerate Fermi gases. This effect is due
to constructive many-particle quantum interferences, which in the boson case are interpreted as “Bose
enhancement.”
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The experimental realization of nonlinear atom optics
[1,2] is one of many recent advances made possible by the
achievement of atomic Bose-Einstein condensation (BEC).
The demonstration of atomic four-wave mixing [3], the
discovery of BEC superradiance [4,5], and the develop-
ment of matter-wave amplification [6,7] are all examples
of nonlinear wave mixing involving atomic Bose-Einstein
condensates. Following these remarkable BEC experi-
ments, questions concerning the role of “bosonic stimula-
tion” and the possibility to observe four-wave mixing with
fermionic atoms have been debated throughout the BEC
community.

A prototypical four-wave mixing experiment involves
two basic elements: a two-body (“nonlinear”) interaction,
and three initial input “waves” (waves 1–3). Four-wave
mixing can be said to occur if the amplitude of a distinct
fourth wave (wave 4), whose properties can be predicted
knowing those of the three initial waves, is much larger
than the background amplitude corresponding to particles
scattered into other accessible final states. For example, in
matter-wave amplification [6,7] one optical wave and two
matter waves are input, resulting in the generation of a new
optical wave and the amplification of one matter wave at
the expense of the other. Atomic four-wave mixing [3]
works similarly, but with four atomic matter waves. In
BEC superradiance [4], on the other hand, only two waves
are input, one atomic and one optical, and both a new
atomic and a new optical field are generated via a similar
four-wave mixing process.

The four-wave mixing process begins when a particle
from wave 1 “collides” with a particle from wave 2. If
one of these particles is scattered into wave 3, momentum
conservation guarantees that the other is scattered into 4.
Energy and momentum conservation, however, also per-
mit both particles to scatter into final states not associated
with waves 3 or 4. These two outcomes are distinguished
only by the fact that wave 3 has nonzero amplitude to be-
gin with. Under suitable circumstances, the first outcome
is seen to dominate the latter, an effect which in the BEC
regime is readily interpreted as being due to bosonic stimu-
lation. A complementary interpretation is that waves 2 and
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3 interfere and form a matter-wave grating that scatters a
particle from wave 1 into 4. The first mechanism would
seem to require a BEC, whereas the second should oc-
cur even in an ultracold gas of fermions. In this Letter
we reconcile these two viewpoints by considering whether
or not significant qualitative differences would have been
observed had the experiments [3,4,6,7] been conducted in-
stead with a gas of fermionic atoms, which we take for
simplicity to be at temperature T � 0. The generalization
of our results to finite temperature Bose and Fermi systems
is straightforward.

Our analysis shows that the establishment of a
high-quality fermionic grating is clearly possible, and
furthermore leads to scattering properties practically
indistinguishable from those of a BEC with the same
mean density profile. That is, the four-wave mixing
efficiency is the same in both cases. We then present a
quantum-mechanical interpretation of this result, contrast-
ing the Bose stimulation responsible for four-wave mixing
in the boson case to a collective quantum interference
effect, closely related to Dicke superradiance [8], in the
fermion case. Finally, we propose a new set of experi-
ments in which four-wave mixing will be observed in the
case of a BEC, yet analogous phenomena will not occur
for fermions.

We recall that Bose stimulation, a quantum statistical
effect that occurs when many bosons occupy a single
quantum state, causes the transition amplitude for the
process V̂ j1, N� ! j0, N 1 1� to be proportional top

N 1 1. Collective quantum interference, on the other
hand, occurs when a many-particle system is prepared
in a quantum superposition of states which are each
dynamically transformed into the same final state by some
interaction. The transition amplitude is then the sum of the
amplitudes for each “path” and (after accounting for nor-
malization factors) is proportional the square root of the
number of distinct initial states. These two collective ef-
fects are, however, closely related: when viewed in “first-
quantized” form, the Bose-stimulated process is also
revealed as a many-particle quantum interference effect,
where many initial states (the N 1 1 different terms under
© 2001 The American Physical Society 4199



VOLUME 86, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 7 MAY 2001
exchange of particle labels) lead to a single final state.
Thus while four-wave mixing phenomena with fermionic
matter waves may be viewed as collective effects rather
than as stimulated processes, at the most fundamental
level such a distinction is not necessarily meaningful.

In order to demonstrate that “four-wave mixing” effects
analogous to those seen in Bose condensed systems occur
as well with fermionic matter waves, and in particular to
show exactly how collective (superradiant) states are cre-
ated, we now examine in detail a simple model system
of interacting atomic matter waves. This system consists
of two scalar fields with annihilation operators denoted
as Ĉ1�r� and Ĉ2�r�. The first field contains N identi-
cal bosonic or fermionic atoms from which a matter-wave
grating is formed. The second field contains a single test
particle which will probe the scattering properties of the
grating. This test particle might be an atom, in which case
the scattering properties are related to atomic four-wave
mixing experiments, or it could be a photon, in which case
the results would relate to phenomena such as BEC super-
radiance and matter-wave amplification. The two fields are
subject to the free Hamiltonians Ĥ1 and Ĥ2, respectively,
and are coupled via a two-body interaction of the form

V̂ � l
Z

d3rĈ
y
1 �r�Ĉy

2 �r�Ĉ2�r�Ĉ1�r� , (1)

which describes equally well atom-atom collisions in the
s-wave scattering approximation or the effective interac-
tion between ground-state atoms and far off-resonant pho-
tons. For simplicity we neglect collisions between atoms
in the grating.

By definition, the matter-wave grating consists of atoms
in two distinct momentum groups, the wave vector of the
grating being their separation in k space. One can consider
these two momentum groups as the two input “beams” for
four-wave mixing. The third input “wave” is the initial
state of the test particle and the output (fourth) wave is
this state shifted in momentum by the wave vector of the
grating. Four-wave mixing occurs if the scattering cross
section of the test particle is predominately into this final
state, i.e., first order Bragg scattering from the matter-wave
grating dominates background scattering.

In each of the aforementioned experiments the input
matter waves were formed from a single initial BEC by
use of a “beam splitter” based on laser-driven two-photon
Bragg transitions between center-of-mass states [9]. Each
atom was thereby transferred into a coherent superposition
of its initial state and a copy of that state displaced in
momentum space by the two-photon recoil kick. Single-
particle quantum interference between these two mo-
mentum groups then results in a typical “standing wave”
density modulation. We note that this coherent beam-
splitting technique is critical to our claim that similar
experimental results could have been obtained with
fermions, as this prepares the necessary collective state.
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For the purpose of this Letter, we specialize to the case
of gratings formed from harmonically confined gases. We
first introduce the three-dimensional harmonic oscillator
states

wm�r� � fa�m��x�jx�fb�m��y�jy�fg�m��z�jz� , (2)

where jj is the oscillator length along the j axis, a�m�,
b�m�, and g�m� are the quantum numbers of the mth 3D
oscillator energy level, and fn is the normalized nth 1D
harmonic oscillator energy level. We further define the
creation operators ây

m�k� for the momentum side modes of
the mth oscillator state as

ây
m�k� �

Z
d3rwm�r�eik?rĈ

y
1 �r� . (3)

At T � 0 the states of N-atom Bose and Fermi gases are
�ây

0 �0��N j0��
p

N! and
QN21

m�0 ây
m�0� j0�, respectively. Thus

immediately after a “50�50” Bragg pulse is applied, the
state of the matter-wave grating is given for bosons by

jcB� � �2NN!�21�2�ây
0 �0� 1 eiuâ

y
0 �K��N j0� , (4)

and for fermions by

jcF� � �2N �21�2
N21Y
m�0

�ây
m�0� 1 eiuây

m�K�� j0� , (5)

where u and h̄K are the relative phase and momentum
transfer imparted on the atoms by the Bragg splitter.
Henceforth we assume u � 0 for simplicity. We note that
these states are normalized only in the limit that h̄K is
much larger than the rms spread in momentum of the ini-
tial Bose and Fermi clouds, a condition which we assume
to hold. It is this condition, in fact, which is sufficient to
guarantee a high-quality grating at wavelength 2p�K .

To compare the quality of the gratings we compute the
mean atomic densities r�r� � �Ĉy

1 �r�Ĉ1�r�� for the two
states (4) and (5). By making use of the well-known (anti)-
commutation relations for bosons and fermions we find

rB�r� � N jw0�r�j2�1 1 cos�K ? r�� (6)

and

rF�r� �
N21X
m�0

jwm�r�j2�1 1 cos�K ? r�� . (7)

This shows that in both cases, the effect of the Bragg split-
ter is to superpose a density modulation �1 1 cos�K ? r��
to the mean density of the initial atomic cloud. The modu-
lation depth is unity because we have chosen arbitrarily
to split each atom into an equal superposition of the two
momentum groups. By choosing different harmonic trap
widths for the two systems it is possible to create atomic
clouds with both the same atom number as well as the
same rms widths in r space, in which case the mean
density profiles would appear nearly identical. Because
the spatial densities are then approximately the same, the
higher phase-space density of the BEC implies that the bo-
son momentum groups are significantly more localized in
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momentum space. Doppler broadening has therefore a
stronger negative effect on the lifetime of the fermion grat-
ing, potentially making the experimental observation of
four-wave mixing more difficult.

The next step is to compare the scattering properties of
these two gratings. We consider the case where the single
test particle is incident on the grating with wave vector
k0 and use perturbation theory to compute the probability
P�k, t� that it is scattered into a given state k after some
time t. The initial state of the system is

jc�0�� � ĉy�k0� jcB,F� , (8)

where

ĉy�k0� � V21�2
Z

d3reik?r
0 ĉ

y
2 �r� (9)

creates a plane-wave test particle of momentum k0 in the
quantization volume V , and clearly,

P�k, t� � �c�t�jĉy�k�ĉ�k� jc�t�� , (10)

where jc�t�� is the solution of the Schrödinger equation.
This scattering problem can be solved perturbatively by ex-
panding jc�t�� to first order in the parameter l of Eq. (1).
This yields the scattering probabilities after the test par-
ticle has been scattered once by the grating.

In order to proceed we must now specify the free Hamil-
tonians Ĥ1 and Ĥ2. Our approach is to assume that
the states wm�r� exp�ik ? r� are approximate eigenstates of
the first-quantized version of Ĥ1, with energy Em�k� ��
h̄vm 1 h̄v1�k� where h̄vm is the energy of the mth trap
eigenstate and v1�k� � h̄k2�2M, M being the atomic
mass. These states are essentially low lying levels of the
harmonic trap shifted in momentum space by h̄k. For
ultracold atoms it is reasonable to neglect the evolution of
these wave packets for times small compared to the oscil-
lator length divided by the velocity h̄k�m. For these short
times the overlap between the initial wave packet and the
state it evolves into remains approximately unity. In ad-
dition, we take the plane waves �1�

p
V � exp�ik ? r� to be

eigenstates of the first-quantized version of Ĥ2 with en-
ergy v2�k�.

For k fi k0 and jK 2 k0j 	 K we find to leading or-
der in l
PB,F�k, t� �
l2

2h̄2V 2 �jF�k, 0, t�j2N 1 jF�k, K, t�j2N 1 jF�k, 0, t� 1 F�k, K, t�j2GB,F�k 2 k0�

1 jF�k, K, t�j2GB,F�k 2 k0 2 K�� . (11)
Here, the time-dependent function

F�k, k0, t� �
sin�V2�k, k0�t�2�

V2�k, k0�t�2
e2iV1�k,k0�t (12)

gives the effects of energy conservation, where
V6�k, k0� � v1�k0 1 k0 2 k� 1 v2�k� 6 v1�k0� 6

v2�k0�, while the functions

GB�q� �
1
2

N�N 2 1� jG00�q�j2, (13)

and

GF�q� �
1
2

"É
N21X
m�0

Gmm�q�

É2
2

N21X
m,n�0

É
Gmn�q�

É2#
,

(14)

where

Gmn�q� �
Z

d3rw�
m�r�eiq?rwn�r� , (15)

describe the shapes of the Bragg resonances. The approxi-
mate equality in Eq. (11) indicates that we have dropped
several (negligible) terms from the exact expression.

The first two terms in Eqs. (11) correspond to sponta-
neous scattering, whereas the third and fourth terms cor-
respond to 0th order (small angle) and 1st order Bragg
resonances, respectively. We note that k0 must be chosen
such that F�k, K, t� overlaps with the first-order Bragg
resonance, i.e., the usual Bragg condition on the incident
wave vector is assumed. The first important feature of
P�k, t� is the scaling of the peak of the Bragg resonance.
By setting q � 0 in Eqs. (13) and (14) we see that the
Bragg maxima scale as N2, whereas the background scat-
tering scales as N . In the BEC case, this scaling is read-
ily understood: in order to Bragg scatter the test particle,
an atom from the momentum group at k � K must be
transferred to the momentum group at k � 0 to conserve
momentum. Hence the enhancement factor of N over the
background is due to bosonic stimulation, the final state
being already occupied on average by N�2 atoms. For the
fermionic case the N2 scaling can be due to only collective
effects, e.g., superradiant spontaneous emission also scales
as N2. We state without proof that despite the more com-
plicated mathematical form of Eq. (14), not only the Bragg
maximum, but also the entire shape of the resonance is
nearly identical for both GB�k� and GF�k�, provided only
that the rms widths and the mean densities (6) and (7) are
the same. This has been verified by plotting Eq. (11) for
N � 86 atoms in spherically symmetric traps with differ-
ent oscillator lengths chosen so that the clouds have the
same spatial extent. Thus we have the perhaps surprising
result that the two microscopically very different gratings
produce almost identical scattering cross sections. We re-
mark that for N � 1 there is no Bragg resonance, only
spontaneous scattering. This shows that the Bragg reso-
nance is a many-particle effect; a single atom whose wave
function is periodically modulated will not Bragg scatter,
and hence cannot be considered as a grating.
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While both types of gratings result in practically
identical scattering distributions, the underlying physical
processes seem quite different at first. We can gain
considerable physical intuition about them by considering
the simple case N � 2 in more detail. In this case, the
initial states of the Bose and Fermi gratings are found by
expanding Eqs. (4) and (5), yielding

jcB� �
1
p

8
�ây2

0 �0� 1 2â
y
0 �0�ây

0 �K� 1 â
y2
0 �K�� j0�

(16)

and

jcF� �
1
2

�ây
0 �0�ây

1 �0� 1 â
y
0 �0�ây

1 �K� 1 â
y
0 �K�ây

1 �0�

1 â
y
0 �K�ây

1 �K�� j0� . (17)

In this representation the gratings appear as quantum su-
perpositions of different initial states. As a result of energy
conservation, Bragg scattering occurs only when one of the
atoms in group K scatters the test particle. Scattering from
this group is described by acting on the initial state with
the operator

P
m ây

m�k�âm�K�, resulting for bosons in the
state

jfB� �
1
p

2
�ây

0 �0�ây�k� 1 â
y
0 �k�ây

0 �K�� j0� , (18)

and for fermions

jfF� �
1
2

�ây
0 �0�ây

1 �k� 1 â
y
0 �k�ây

1 �0� 1 â
y
0 �k�ây

1 �K�

1 â
y
0 �K�ây

1 �0�� j0� . (19)

The normalized final state of the system is therefore
jc

0
B,F� � jfB,F��

p
�fB,FjfB,F�.

The matrix element for this scattering process is given
byø

c 0
B,F

Ç X
m

ây
m�k�âm�K�

Ç
cB,F

¿
�

q
�fB,FjfB,F� . (20)

Far from the Bragg resonance we can safely assume
�âm�k�, ây

n �0��6 � 0 and �âm�k�, ây
n �K��6 � 0, in which

case the matrix elements are unity for both the boson
and fermion gratings. At the Bragg resonance �k � 0�,
however, the first term in Eq. (18) becomes â

y2
0 �0� j0�,

i.e., a particle is transferred into an already occupied
state. Bose enhancement then results in a matrix element
of

p
3�2. For fermions, the first two terms in Eq. (19)

become identical and thus their amplitudes interfere
constructively, also resulting in a matrix element of

p
3�2.

Thus the quantum state of the grating (17) corresponds to
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a Dicke collective state symmetric with respect to which
harmonic oscillator state is in which momentum group.
We emphasize that the state of the grating is only a Dicke
“superradiant” state with respect to scattering in one direc-
tion; there are many scattering directions where it is not
a superradiant state. This additional feature is analogous
to superradiant spontaneous emission from atoms with
multiple ground states.

We began by pointing out that Bose stimulation oc-
curs because quantum degenerate bosonic states are analo-
gous to Dicke states. The unique thing about bosons is
that this enhancement is guaranteed for transitions be-
tween macroscopically occupied quantum states, whether
one population is coherently split off of the other or formed
independently in another apparatus. This is not true for
fermions, where the observation of four-wave mixing re-
quires the special preparation of a collective state. A sec-
ond class of experiments, where the various matter waves
consist of independently generated degenerate atomic en-
sembles, should therefore show a distinct contrast between
bosons and fermions. While four-wave mixing will still
occur in the BEC case, it will no longer be observed with
fermions. Instead a hole, or anti-four-wave mixing, might
be observed in the background scattering probability as
Fermi blocking prevents Bragg scattering.
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Note added.—After submission of this manuscript we
learned of a related paper by Ketterle and Inouye [10]
which reaches similar conclusions.
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