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Viscoelasticity of Solutions of Motile Polymers
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We explore the linear viscoelastic response of an entangled, isotropic solution of polar semiflexible
polymers with active, motile centers which generate longitudinal motion. Because of the activity of
these centers, the short-time modulus displays two novel power-law regimes: Initially G�t� ~ t21�8,
then the response is “Rouse-like” with G�t� ~ t21�2. At longer times we find accelerated relaxation due
to directed reptation, resulting in a reduced low frequency viscosity.
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The proteins myosin and actin are major components of
the cell cytoskeleton. Myosin, a molecular motor, hydro-
lyzes adenosine triphosphate (ATP) to generate directional
forces and motion along polar actin filaments (F-actin) [1].
In vitro experiments have shown that the addition of ATP to
a solution of actin filaments and myosin can lead to abrupt
changes (e.g., liquefaction) in its behavior [2]. Out of
equilibrium chemical activity in motor-filament solutions
is known to lead to complex cooperative behavior [3–5]
including pattern formation and creation of dissipative
structures. However, even in the absence of macroscopic
patterning the mechanical response functions of such a
mixture should be strongly modified by the novel micro-
scopic dynamics occurring in motor/filament solutions.

Myosin spontaneously aggregates in vitro to form clus-
ters. In an ATP rich system these myosin clusters can then
bind to pairs of filaments and actively move the filaments
with respect to each other. In a sheared sample this results
in rapid release of elastic strains, for the directed motion
of the polymers leads to a reduction of the reptation time
from trept � L3 (characteristic of diffusion) to trept � L
for filaments of length L sliding at constant speed [2,6].
Motivated by experimental observations and this simple ar-
gument, one is led to ask a number of further quantitative
questions. What is the elastic stress supported by such a
system? What are the relevant relaxation mechanisms and
time scales? As a step in this direction, we focus here on a
simple model for the viscoelasticity of an “active” solution
of motile semiflexible filaments, within the “tube” picture
of polymer dynamics. This is clearly an oversimplifica-
tion of the in vitro system described above; nevertheless,
the physics of the problem, even with this approximation,
is interesting and nontrivial.

We consider a monodisperse solution of semiflexible
and polar polymers of persistence length Lp , length L,
and diameter a, with Lp ¿ a, at a monomer concentra-
tion ra such that the mesh size of the solution is j �
�raa�21�2 ø Lp , L [7]. We model the ATP induced activ-
ity of actin clusters by stochastic forces on the polymers,
parallel to the filament contour (transverse motion is con-
strained by entanglements), which always act in the same
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direction with respect to the polarity of the filaments. The
effect of the motor activity is (1) to increase the ampli-
tude of the longitudinal fluctuations along the contour of
the filaments giving rise to a higher effective temperature
T ! T 1 Tact for the tangential motion and (2) to give the
filaments a nonzero curvilinear drift velocity in their tubes,
ym. Increasing/decreasing activity leads to an increase/
decrease in Tact and ym. A cartoon of the system is shown
in Fig. 1. We note that similar descriptions in terms of
an effective temperature for a nonequilibrium system have
been used to model noise in foams [8] as well as other
driven, glassy systems.

We derive the linear viscoelastic response of such an
active polymer solution, assuming that its structure is not
perturbed by the activity of the motor clusters. Despite
this crude assumption we uncover rich physical behavior,
as the “activity” modifies the already subtle dynamics of
passive semiflexible polymer solutions [9–13]. We first
summarize our main results. We then describe our model,
our calculation strategy, and the various scaling regimes
obtained. Finally we return to the actin-myosin system,
discuss the magnitude of the effects, and emphasize ele-
ments neglected in the present model.

Main results.—The linear response of this polymer so-
lution to a weak time dependent shear strain, gij�t�, is char-
acterized by the shear modulus G�t�, such that the shear
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FIG. 1. (a) The active solution with motor centers and entan-
glement points. (b) The “tube” encircling the polymer and the
directed motion ym. We show the lengths j, Le, De.
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stress is sij�t� �
Rt

2` dt0 G�t 2 t0� �gij�t0� [7]. We find
short-time (high frequency) moduli as well as terminal
relaxation times that differ from those of passive polymer
solutions. The active solution is harder at high frequen-
cies due to the increased fluctuations of the longitudinal
modes. These also change the relative magnitude of the
longitudinal and transverse fluctuations, leading to two
new relaxation regimes. At very low frequencies, the
directed motion of the filaments leads to a softening or
“fluidification” as suggested in the introduction. Our re-
sults are schematized in Fig. 2 and summarized as follows.
Upon submitting the system to a step shear, the shear
modulus G�t� decays for very short times as t23�4, as
for passive polymer solutions [12,13]. This holds up to a
time t0 � �1 1 Tact�T�28�5L3

ph�kBT where we find a
regime with two new power-law decays: G�t� � t21�8 up
to a time t1 � hL

21�5
p j

16�5�kBT and a modulus G2 �
kB�T 1 Tact�j

212�5
L

23�5
p , after which there is a faster

decay G�t� � t21�2 (h is the solvent viscosity). In the
long-time regime, the relaxation modulus develops a
plateau, as trapped stress cannot relax due to entangle-
ments before the filaments escape from their initial
tubes [7]. While the magnitude of the plateaux are the
same as for passive polymer solutions, the tube renewal
time has a different dependence on chain length L and
persistence length Lp . When L�Lp ¿ 1, the dominant
stress is due to constrained transverse fluctuations of
the filament [9,10,12] leading to a plateau of magnitude
G3 � j

214�5
kBT�L

1�5
p which begins at a time tcoil

2 �
L3

p�j�Lp�4�1 1 Tact�T �2h�kBT , and decays after a time
t3 � L�ym. For filaments with L�Lp ø 1, the stress
is due to constrained orientational dynamics [12,14–16]
and from trod

2 � L2Lp�j�Lp�12�5�1 1 Tact�T �2h�kBT
we find a plateau of magnitude G4 � kBTj22L21 which
decays after a time t4 �

p
LLp�ym.

Explicit analysis.—The stress is calculated from the
fluctuating dynamics of Kratky-Porod worm-like chains.
A typical filament conformation is parametrized by
R�s�. The Hamiltonian of a worm-like chain is given
4172
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FIG. 2. Shear modulus as a function of time t: comparison
of active (thick-solid lines) and passive (thin-dashed lines) solu-
tions. The different regimes separated by t0, t1, tcoil

2 , trod
2 , t3, and

t4, respectively. Top: Time scale for active solutions. Bottom:
Time scale for passive solutions.

by Hwlc�R�s�, t�s�� � k�2
RL

0 ds j≠2
sRj2 1

RL
0 ds t�s� 3

�j≠sRj2 2 1� where ≠xA � ≠A�≠x and an instantaneous
local tension, t�s�, is induced by the incompressibility
of the chain. The persistence length Lp � k�kBT is the
length scale over which the chain loses memory of its
orientation. The filaments are confined to a tube [7] of
diameter De � Lp�j�Lp�6�5. We define an entanglement
(deflection) length [14–16] Le � Lp�j�Lp�4�5, the dis-
tance between successive collisions of the filament with
its tube [see Fig. 1(b)]. The hierarchy of length scales is
L, Lp ¿ Le ¿ a. On length scales � less than Le, the re-
laxation is due to the dynamics of “free” chains [7], while
for � . Le it is due to diffusive directed motion of the po-
lar filaments in their tubes. For � , Le (and consequently
� , Lp), the chain conformation is anisotropic and can
be described by an expansion about a rod with orientation
û (a unit vector, jûj2 � 1), R�s, t� � �s 2 rk�s, t��û 1

r��s, t�; û ? r��s, t� � 0 with parallel (longitudinal)
and perpendicular (transverse) components of motion,
rk, jr�j ø s. The filament dynamics in a shear flow are
described by the equations [17]
≠tr��s, t� � z 21
� �2k≠4

sr� 1 t�s, t�≠2
sr� 1 ≠st≠sr� 1 f��s, t�� 1 �I 2 ûû� ? �g�t� ? r� 1 O�j≠sr�j

3� , (1)

≠trk�s, t� � z
21
k �2k≠4

srk 2 ≠st 1 fm�s, t� 1 fk�s, t�� 1 �gij�t�ûi ûj�rk 2 s� 1 O�j≠sr�j
3� . (2)
Note the anisotropic nature of the coupling to the shear
flow due to the rodlike nature of the polymer. Because
of constraint of constant length, ≠srk � 1

2 j≠sr�j
2 1

O�j≠sr�j
4� which determines t, these equations are cou-

pled. The friction coefficients are zk � 2ph log jj�aj �
1
2z�. For short filaments L , Lp , the rotational diffusion
of a rod of length L determines the dynamics of û�t�
which is much slower than that of rk, r� with friction
coefficient zu � phL3. We have in addition to the ther-
mal fluctuating force ��� fk�s, t�, f��s, t���� a nonequilibrium
or active force, fm�s, t�, in the longitudinal direction
due to the activity of the motors. The thermal force has
zero mean, 	f�s, t�
 � 0, and mean square fluctuations
	 fi�s, t�fj�s0, t0�
 � 2kBTdijzid�s 2 s0�d�t 2 t0� where
the subscripts �i� refer to k, �. We choose to model the ac-
tive force by a nonzero mean 	 fm�s, t�
 � zkym and mean
square fluctuations of the form, dfm�s, t� � fm�s, t� 2

	 fm�s, t�
, 	dfm�s, t�dfm�s0, t0�
 � 2kBTactzkd�s 2 s0� 3

d�t 2 t0�, giving an active contribution, Tact, to the “tem-
perature” of the longitudinal motion. A self-consistent
description [17] of the dynamics can be obtained from the
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solution of Eqs. (1) and (2) and inextensibility. Because
the transverse dynamics is cut off at Le, there is different
behavior at high and low frequencies with a crossover fre-
quency, ve � 2ap�L4

e (a � k�z�). The dynamic fluc-
tuations of semiflexible filaments are anisotropic [17,18].
After time t, longitudinal fluctuations are relaxed over a
length �k�t� � �tkBT �2Lp�5�2ph�1�8 for t , 1�ve and
�k�t� � �tkBTL2

pL23
e �2ph�1�2 for t . 1�ve. In com-

parison, transverse fluctuations are relaxed over a length
���t� � �tkBTLp�4ph�1�4 for t , 1�ve [17] and can
relax only by reptation for t . 1�ve.

We calculate the Kramers-Kirkwood stress tensor [7],
sij�t� � 2ra�L

RL
0 ds 	Fi�s, t�Rj�s, t�
 where F�s, t� is

the total force on the filament at arc length s at time t,
and R�s, t� � �s 2 rk�û 1 r� is the position of the fila-
ment. The force balance equations (1) and (2) and the
rotational dynamics give F�s, t�. After subtracting the
minor contributions and the isotropic part of the stress,
we obtain
sij�t� �

*
ra

�

Z ��Lp

0
ds

(
ûi ûj

√
s≠st|{z}

s�1�

2 rk≠st| {z }
s�2�

!
2 k≠4

sr�ir�j 1 ≠s�t≠sr�i�r�j| {z }
s�3�

)
1 3

raa
L

kBT

µ
ûi ûj 2

1
3

dij

∂
| {z }

s�4�

+
,

(3)
where the average is over thermal and active fluctuations
and orientation. Three of the four contributions to the
shear stress, s

�1,3,4�
ij , arise from the coupling of the strain

to rk, r�, and û, respectively. They have been analyzed
recently for passive solutions [9–13], and named tension,
curvature, and orientational stress, respectively. The term

s
�2�
ij � 2	ra

�

R��Lp

0 ds rk≠st
, which we call the longitu-
dinal stress is new. It has been ignored in passive polymer
solutions, Tact � 0, for it is then much smaller than the
other three. In active polymer solutions, however, for large
enough motor activity, i.e., Tact�T . �Lp�Le�5�2 2 1, it
dominates the high frequency response.

High frequency behavior.—For short times, the fila-
ments do not feel the confining interactions of entangle-
ments. As activity does not couple to transverse modes,
the tension modulus is the same as for passive polymer

solutions, G�1��t� �
j22kBTL2

p

�tLpkBT�z��3�4 � kBTj22L2
p��3

��t�.
So are the curvature and orientation stresses, G�3��t� �

j22kBT
�tLpkBT�z��1�4 � j22kBT����t� and G�4��t� �

3kBT
5L 3

j22e26tkBT�zu . The longitudinal modulus is given by
G�2��t� � j22kB�T1Tact�

�t�2Lp�5kBT�zk�1�8 � kB�T 1 Tact�j22��k�t�. A
simple explanation for this expression is as follows: after
time t, divide the filaments into lengths (blobs) �k�t�
[compared to ���t� for the curvature stress] with relaxed
longitudinal fluctuations. Then, assuming affine defor-
mation, the longitudinal stress is due to kB�T 1 Tact�
(compared to kBT for transverse) of stored energy per
length �k�t�. At extremely short times the tension modulus
G�1��t� � t23�4 is very high and dominates, but it relaxes
much faster than the longitudinal modulus G�2��t�, which,
for large Tact, becomes the dominant component after t0
defined by G�2��t0� � G�1��t0�. If the solution activity
goes down, i.e., Tact ! 0, G�2� ø G�1� [12,13] and this
regime vanishes. As discussed in the following, G�3,4�

become relevant only at longer times [9,12,14–16].
Intermediate frequency behavior.—At longer time

scales (t . t1 � 1�ve � z�L4
e�kBTLp), the filament

dynamics starts to be affected by the confining effects
of neighboring chains. Since the dominant component
of the modulus G�2� is due to rk, it is there that we first
see this effect. Solving Eq. (2) for t . t1, we obtain
a new power-law decay G�2��t� � j22kB�T1Tact�

�tp3L2
pkBT�L3

ezk�1�2 �
j22kB�T 1 Tact���k�t�, again due to nonrelaxed stress
above the scale �k�t�. The modulus G�t� � G�2��t�, until
it becomes comparable to the plateaux of G�3,4��t� at times
tcoil
2 and trod

2 , respectively.
Low frequency behavior.—For time scales larger than

t� � t1 [where 	r��t��2
 � D2
e ] and tu � zuD2

e�kBTL2,
respectively, the transverse and orientational modes of
the polymers feel the tube. Then the stress components
s �3,4��t� can relax only when the filament has moved
out of its deformed original tube. The magnitude of the
corresponding plateaux is the amount of nonrelaxed stress
at the times t� (tu) after a small step strain. As the motors
give a mean velocity ym to the filaments in their tubes,
the filament dynamics obeys a diffusion equation with
drift. We now discuss separately coil-like (a) and rod-like
(b) filaments [12].

(a) Coils (L ¿ Lp): For this system, stress is domi-
nated at long times by the constraints on the transverse
motion of the filament in its tube, i.e., s�3��t�, which is
proportional to the remaining amount of the original tube.
This gives the relaxation modulus (valid until t � L�ym),
G�3��t� � G3

P
p,odd

8
p2p2 cos� ppymt

L �e2tp2p2Dc�L2
, where

G3 � 23�4G�5�4�arakBT�3pLe is the amount of curva-
ture stress relaxed at t� and Dc � kB�T 1 Tact��zkL is
the curvilinear diffusion constant along the tube axis.
This is similar to the Doi-Edwards relaxation spectrum [7]
but modulated by a cosine. For active polymer solutions
ym�L ¿ Dc�L2, and the relaxation time is t3 � L�ym.
Making the solution less active, ym, Tact ! 0, we obtain
the reptation result t3 � z�L3�kBT [7,9,12].

(b) Rods (L ø Lp): For rod-like filaments, the domi-
nant component of stress at long times is due to constrained
orientational dynamics, i.e., s�4��t�. For initially ran-
domly oriented filaments, we obtain a relaxation modulus
(valid until t � L�ym) G�4��t� � G4 cos�q1ymt�e2tq2

1Dc ,
4173
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where G4 � 3ara�5L exp�2tu6kBTzu� � 3ara�5L is
the amount of stress relaxed at tu and q1 �

p
6�LLp .

For active solutions ym�L ¿ Dc�LLp and the relaxation
time is t4 �

p
LLp�ym. Decreasing the activity of the

system, ym, Tact ! 0, we recover the reptation result
t4 � z�L2Lp�kBT [12,14–16].

Discussion.— Let us return now to the actin-myosin-
ATP system that stimulated our theoretical study: We
estimate typical time scales and moduli from a direct
mapping of our calculation onto this system. We have
modeled the noise as a Gaussian white noise of nonzero
mean. In a slightly more realistic picture, a motor center
has periods of activity of duration ts (the power stroke)
during which a constant force f0 is applied, separated by
passive periods which are Poisson distributed with a mean
duration ats; a ¿ 1. The motor clusters are also as-
sumed randomly distributed along the filaments at a mean
distance �m. Assuming that clusters act independently, we
estimate from the mean force ym � �1 1 a�21f0�zk�m,
and from the local fluctuations of the force about its mean
kBTact � f2

0 tsa��1 1 a�zk�m. If myosin is at a concen-
tration rm and the mean number of myosin per cluster is N ,
then �m � N�rmj2�21. Let us turn to numbers: a bound
myosin has a power stroke of duration ts � 5 ms, a step
size of ds � 10 nm, and a stall force of fmax � 4 pN [1].
By considering viscous drag, we estimate f0 � 0.1 pN ø
fmax. Actin has persistence length Lp � 17 mm and
diameter a � 7 nm. A solution of F-actin at a typical
concentration 100 mg�ml has a mesh size j � 0.5 mm.
For rm � 0.1 mM (micromolar) and N � 10 we estimate
�m � 5 mm. This gives Tact�T � 102, so that the high
frequency behavior described above should be relevant.
The crossover modulus between the high and intermediate
frequency regimes is G2 � 10 Pa. Long-time fluidifica-
tion is also clear: relaxation times for coils (L � 50 mm)
and rod-like polymers (L � 5 mm) are, respectively,
t3 � 1 s and t4 � 0.1 s, compared to t3 � 104 s and
t4 � 100 s for passive solutions at the same actin con-
centration. The corresponding plateau are, respectively,
G3 � 1022 Pa and G4 � 1024 Pa.

In this Letter we have considered the driven dynamics of
actin filaments using a modified tube model. This picture
is valid only within certain limits: When motors stall at
polymer ends before detaching [4] and at high concentra-
tion of motors we expect formation of statically inhomoge-
neous structures. We do note, however, that both analytic
[5] theories of coupled motor/filament systems and simu-
lations [3] have neglected entanglement; they have surely
4174
underestimated the dynamic stability of actin-myosin sys-
tems where the filaments are strongly entangled. The crite-
ria for stability of such systems is a difficult open problem.

In order to approximate the effect of the individual clus-
ters of myosin by independent, short duration impulses we
require that neighboring clusters on the same filament do
not see each other via tension propagation, implying that
�m . �k. This criterion is verified in the regime that we
have discussed. Finally, our calculation was inspired by
the observation of fluidification of an actin-myosin solu-
tion. However, this system could “fluidify” in other ways:
Myosin, in the absence of ATP acts as a passive cross-
linker. The sudden addition of ATP can lead to a rupture
of the network, breakage of filaments, and thus fluidifica-
tion. An alternative scenario is that polymers could buckle
out of their tubes due to spatially inhomogeneous motility,
leading to hernias and thus increased entanglement.
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