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We consider the use of N spin- 1
2 particles for indicating a direction in space. If N . 2, their optimal

state is entangled. For large N , the mean square error decreases as N22 (rather than N21 for parallel
spins).
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Information theory usually deals with the transmission
of a sequence of discrete symbols, such as 0 and 1. Even if
the information to be transmitted is of a continuous nature,
such as the position of a particle, it can be represented with
arbitrary accuracy by a string of bits. However, there are
situations where information cannot be encoded in such
a way. For example, the emitter (conventionally called
Alice) wants to indicate to the receiver (Bob) a direction
in space. If they have a common coordinate system to
which they can refer, or if they can create one by observing
distant fixed stars, Alice simply communicates to Bob the
components of a unit vector n along that direction, or
its spherical coordinates u and f. But if no common
coordinate system has been established, all she can do is
to send a real physical object, such as a gyroscope, whose
orientation is deemed stable.

In the quantum world, the role of the gyroscope
is played by a system with large spin. For example,
Alice can send angular momentum eigenstates satisfying
n ? Jjc� � jjc�. This is essentially the solution pro-
posed by Massar and Popescu [1] who took N parallel
spins, polarized along n. The fidelity of the transmission
is usually defined as

F � �cos2� x�2�� � �1 1 �cosx���2 , (1)

where x is the angle between the true n and the direction
indicated by Bob’s measurement. The physical meaning of
F is that 1 2 F � �sin2� x�2�� is the mean square error of
the measurement, if the error is defined as sin� x�2�. The
experimenter’s aim, minimizing the mean square error, is
the same as maximizing fidelity. We can of course define
“error” in a different way, and then fidelity becomes a
different function of x and optimization leads to different
results [2]. Here, we shall take Eq. (1) as the definition
of fidelity.

Massar and Popescu showed that for parallel spins,
1 2 F � 1��N 1 2�. It then came as a surprise that for
N � 2, parallel spins were not the optimal signal, and a
slightly higher fidelity resulted from the use of opposite
spins [3]. The intuitive reason given for this result was
the use of a larger Hilbert space (four dimensions instead
of three). This raises the question, what is the most
efficient signal state for N spins, whose Hilbert space has
2N dimensions? Will F approach 1 exponentially? In
0031-9007�01�86(18)�4160(3)$15.00
this Letter, we show that the optimal result is a quadratic
approach, as illustrated in Fig. 1.

Our first task is to devise Bob’s measuring method,
whose mathematical representation is a positive opera-
tor-valued measure (POVM) [4]. For any unit vector n, not
necessarily Alice’s direction, let j j, m�n�� � j j, m�u, f��
denote the coherent angular momentum state [5]
that satisfies

J2j j, m�n�� � j� j 1 1� j j, m�n�� , (2)

and

n ? Jj j, m�n�� � mj j, m�n�� . (3)

We then have [5]

�2j 1 1�
Z

duf j j, m�u, f�� � j, m�u, f�j � 1j , (4)

where

duf :� sinududf�4p , (5)
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FIG. 1. �1 2 F� as a function of N . Open circles are for
m � j (Ref. [1]); closed circles are for m � 0 (this work).
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and 1j is the projection operator over the �2j 1 1�-
dimensional subspace spanned by the vectors j j, m�u, f��.
If N � 2, so that j is 0 or 1, the two resulting subspaces
span the whole 4-dimensional Hilbert space. For higher
N , all the rotation group representations with j , N�2
occur more than once. We then have, if we take each j
only once, from 0 or 1

2 to N�2,X
�2j 1 1� �

�N 1 2�2

4
or

�N 1 1� �N 1 3�
4

, (6)

for even or odd N , respectively. For large N , the dimen-
sionality of the accessible Hilbert space tends to N2�4,
and this appears to be the reason that the optimal result for
1 2 F is quadratic in N , not exponential. An intuitive ar-
gument for this quadratic behavior was given by Aharonov
and Popescu [6]. No improvement results if we endow the
particles with internal quantum numbers such as charge or
strangeness, so that the entire Hilbert space can be spanned
by states with distinguishable properties, because any ad-
ditional information that Alice could send to Bob would
refer to these new quantum numbers, not to the direction
of n.

We now turn to the construction of Bob’s POVM [4].
Let r denote the initial state of the physical system that
is measured. All these input states span a subspace of
Hilbert space. Let 1 denote the projection operator on that
subspace. A POVM is a set of positive operators Em which
sum up to 1. The index m is just a label for the outcome
of the measuring process. The probability of outcome m

is tr� rEm�. In the present case, m stands for the pair of
angles uf that are indicated by Bob’s measurement. If
we want a high accuracy, these output angles should have
many different values, spread over the unit sphere [7]. For
example, the components of a continuous POVM, as in
Eq. (4), are given by

Euf � �2j 1 1�dufj j, m�u, f�� � j, m�u, f�j . (7)

Such a POVM with m � j corresponds to the method of
Ref. [1]. The choice m � j is not optimal. As shown in
[3] for the case N � 2, signal states with opposite spins
give a higher fidelity. With our present notations, these
states are �j0, 0� 1 j1, 0�n����

p
2. They involve two values

of j, but a single value of m, namely, 0.
One possibility to include several values of j in a POVM

is to take a sum of expressions such as (4). This brings
no advantage, because a convex combination of POVMs
cannot yield more information than the best one of them
[8]. Optimal POVM components can always be assumed to
have rank one. Therefore each one of them should include
all relevant j:

Euf :� dufju, f� �u, fj , (8)

where

ju, f� :�
N�2X
j�m

p
2j 1 1 j j, m�u, f�� . (9)
To verify that this is indeed a POVM, we note that inR
Euf there are diagonal terms �2j 1 1� j j, m�u, f�� 3

� j, m�u, f�j, which give 1j , owing to Eq. (4). The off-
diagonal terms with j1 fi j2 vanish, as can be seen by tak-
ing their matrix elements between � j1, m1j and j j2, m2� in
the standard basis where Jz is diagonal [9]. We have [10]

� j2, m�u, f� j j2, m2� � D � j2�
mm2

�cuf� , (10)

with a similar (complex conjugate) expression for
� j1, m1 j j1, m�u, f��. The rotation matrices D are
explicitly given by

D � j2�
mm2

�cuf� � eimcd� j2�
mm2

�u�eim2f, (11)

where the Euler angle c is related to an arbitrary phase
which is implicit in the definition of j j, m�u, f��. Note
that a single value of m occurs in all the components of
the vectors ju, f� in Eq. (9), so that the undefined phases
e6imc mutually cancel. It then follows from Eq. (4.6.1) of
Ref. [10] that all the off-diagonal matrix elements of

R
Euf

vanish, so that we indeed have a POVM [11].
While Bob’s optimal POVM is essentially unique in the

Hilbert space that we have chosen, Alice’s signal state,
which is

jA� �
N�2X
j�m

cjj j, m�n�� , (12)

contains unknown coefficients cj . The latter are
normalized,

N�2X
j�m

jcjj
2 � 1 , (13)

but still have to be optimized.
The probability of detection of the pair of angles uf,

indicated by the POVM component Euf, is

�AjEufjA� � duf

É
N�2X
j�m

cj

p
2j 1 1

3 � j, m�u, f� j j, m�n��
Ç2

. (14)

We have [5]

� j, m�u, f� j j, m�n�� � eihd� j�
mm� x� , (15)

where x is the angle between the directions n and uf,
and the phase eih is related to the arbitrary phases which
are implicit in the definitions of the state vectors in (15).
The important point is that eih does not depend on j and
therefore is eliminated when we take the absolute value of
the sum in Eq. (14). Explicitly, we have

d� j�
mm� x� � cos2m� x�2�P�0,2m�

j2m �cosx� , (16)

where P
�a,b�
n �x� is a Jacobi polynomial [5,10]. We shall

write x � cosx for brevity, so that the fidelity is

F � �1 1 �x���2 . (17)
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Our problem is to find the coefficients cj that maximize
�x�. Owing to rotational symmetry, we can assume that
Alice’s direction n points toward the z axis, so that duf can
be replaced by dx�2 after having performed the integration
over f. We thus obtain

�x� �
1
2

Z 1

21
x dx

Ç N�2X
j�m

cj

p
2j 1 1

µ
1 1 x

2

∂m

3 P
�0,2m�
j2m �x�

Ç2
. (18)

This integral can be evaluated explicitly by using the
orthogonality and recurrence relations for Jacobi polyno-
mials [12,13]. The result is

�x� �
X
j,k

c�
j ckAjk , (19)

where Ajk is a real symmetric matrix, whose only nonva-
nishing elements are

Ajj � m2�� j� j 1 1�� , (20)

and

Aj,j21 � Aj21,j � � j2 2 m2�� j
p

4j2 2 1 . (21)

The optimal coefficients cj are the components of the
eigenvector of Ajk that corresponds to the largest eigen-
value, and the latter is �x� itself. The result of the calcula-
tion is displayed in Fig. 1 for m � 0 (which is best) and
m � j (which is the method investigated in Ref. [1]). For
m � 0 and large N , we find that

1 2 F ! �2.4048��N 1 3��2, (22)

where the numerator is the first zero of the Bessel function
J0 [14]. The right-hand side ought to be compared to the
result of [1], which was 1��N 1 2�.

For N � 2 and m � 0, our result coincides with
Ref. [3]. For N � 3, we obtain F � 0.844 95 with
c3�2 � 0.603 62 and c1�2 � 0.797 55. The results for
larger N and intermediate values of m gradually fall
between those displayed in Fig. 1. Had we chosen a
definition of fidelity other than Eq. (1), these results
would of course be different, but the method for solving
the problem is in principle the same.

It thus appears that it is advantageous to take the low-
est possible m (namely, m � 0 for even N and m � 1

2 for
4162
odd N). This is intuitively quite plausible [6]. Our numeri-
cal results agree with the analytical treatment in Ref. [14],
whose details appeared after the present Letter was sub-
mitted. We are grateful to the authors of Ref. [14] for
clarifying their work.

Work by A. P. was supported by the Gerard Swope Fund
and the Fund for Encouragement of Research. P. F. S. was
supported by a grant from the Technion Graduate School.

[1] S. Massar and S. Popescu, Phys. Rev. Lett. 74, 1259 (1995).
[2] S. Massar, Phys. Rev. A 62, 040101(R) (2000).
[3] N. Gisin and S. Popescu, Phys. Rev. Lett. 83, 432 (1999).
[4] A. Peres, Quantum Theory: Concepts and Methods

(Kluwer, Dordrecht, 1995), p. 283.
[5] A. M. Perelomov, Commun. Math. Phys. 26, 222 (1972).
[6] Y. Aharonov and S. Popescu (private communication).
[7] If N # 4, an optimal POVM can have a finite number of

components, corresponding to the vertices of regular poly-
hedra. In general, a POVM with a nonuniform distribution
of directions on the unit sphere can be converted into a
uniform one by rotational symmetrization. This does not
affect the fidelity of transmission if the input is uniform.
We can therefore assume that the POVM distribution is
uniform without loss of generality.

[8] A convex combination of POVMs, such as Em �P
wkEkm, with wk . 0 and

P
wk � 1, has the physical

meaning that each one of the sets 	Ekm
 is chosen by the
experimenter with probability wk .

[9] This is the reason each value of j can occur only once
in the POVM, as otherwise there would be off-diagonal
elements in the sum. Such off-diagonal elements can still
be avoided by introducing new “internal” quantum numbers
but, as explained above, any additional information would
refer to these new numbers, not to the direction indicated
by Alice.

[10] A. R. Edmonds, Angular Momentum in Quantum Mechan-
ics (Princeton University Press, Princeton, 1957).

[11] More generally we can take ju, f� �
P

j

p
2j 1 1 3P

m bjmj j, m�u, f��, with
P

m jbjmj
2 � 1 for each j.

Likewise, Alice’s signal state (12) may include all j and
all m. In that case, it can be proved that fidelity is optimal
if a single value of m is used.

[12] G. E. Andrews, R. Askey, and R. Roy, Special Functions
(Cambridge University Press, Cambridge, 1999), p. 99.

[13] Higher Transcendental Functions, edited by A. Erdélyi
(McGraw-Hill, New York, 1953), Vol. 2, p. 169.

[14] E. Bagan, M. Baig, A. Brey, R. Muñoz-Tapia, and
R. Tarrach, Phys. Rev. Lett. 85, 5230 (2000);
quant-ph/0012006 [Phys. Rev. A (to be published)].


