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We report computations of the short- and long-distance (scaling) contributions to the square-lattice Ising
susceptibility. Both computations rely on summation of correlation functions, obtained using nonlinear
partial difference equations. In terms of a temperature variable t, linear in T�Tc 2 1, the short-distance
terms have the form tp�lnjtj�q with p $ q2. A high- and low-temperature series of N � 323 terms,
generated using an algorithm of complexity O�N6�, are analyzed to obtain the scaling part, which when
divided by the leading jtj27�4 singularity contains only integer powers of t. Contributions of distinct
irrelevant variables are identified and quantified at leading orders jtj9�4 and jtj17�4.
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I. Introduction.—The two-dimensional Ising model has
been extremely useful as a testing ground for new theoreti-
cal ideas and methods in the study of phase transitions and
critical phenomena. Our present understanding is the re-
sult of a series of dramatic developments spanning more
than half a century, starting with Onsager’s exact compu-
tation of the free energy [1], followed by Yang’s derivation
of the spontaneous magnetization [2] and by the work of
many researchers on the correlation functions, including
Toeplitz determinantal formulas [3], exact expressions for
their behavior at large separation [4], and nonlinear partial
difference equations for their efficient computation [5–7],
to mention only those results which are used in the present
work. All results above apply to the zero-field case. While
an exact expression for the susceptibility as the sum of
two-point correlation functions over all separations [4] ex-
ists, a useful closed form expression does not. Moreover,
as we discuss, there are strong indications that the suscep-
tibility has a natural boundary in the complex plane [8,9],
a feature which rules out any expression in terms of the
“standard” functions of mathematical physics.

Nevertheless, it is desirable to obtain as detailed infor-
mation about the susceptibility as possible, not only be-
cause of its physical importance, but also because of the
significant role it plays in ideas about scaling and the renor-
malization group. In the vicinity of the ferromagnetic criti-
cal point at temperature T � Tc, the susceptibility exhibits
a singularity of the form

b21x6 � C06
�2Kc

p
2 �7�4jtj27�4F6�t� 1 B�t� . (1)

Here b � �kBT�21, t � 1
2 �s21 2 s�, s � sinh2K , and

sinh2Kc � 1 with K � bJ the conventional Ising model
coupling constant. The scaling-amplitude functions F6�t�
are normalized to unity at t � 0. As a consequence of the
exact knowledge of the long-range correlations, the coef-
ficients C06

were calculated exactly [10] in terms of the
0031-9007�01�86(18)�4120(4)$15.00
solution of a Painlevé III equation. Additionally, the lead-
ing behavior of both F6�t� was computed to be 1 1

1
2t.

The antiferromagnetic susceptibility, on the other hand,
is dominated by the short-distance correlation functions
and has leading singularity �const 3 t lnjtj�. Such short-
distance “background” terms are present as well in the fer-
romagnetic susceptibility and are denoted by B�t� in (1).
The leading amplitudes of the analytic and singular parts
of B�t� were computed for a general wave vector depen-
dent susceptibility in [11,12].

An analysis [13] of a 51 term high-temperature series
by means of differential approximants yielded two fur-
ther correction terms in the scaling-amplitude function F1,
with numerical amplitudes close to rational values, 5

8t2 1
3
16t3, and confirmed that the same scaling-amplitude func-
tion is numerically consistent with the first 11 terms in the
low-temperature expansion. These results agreed with the
prediction [14] that the corrections to scaling are entirely
due to the nonlinearity of the scaling fields and not to the
presence of irrelevant operators [14]. However, a recent
analysis of 115 term high- and low-temperature series [15]
showed that this prediction appears to break down in the
amplitude of t4.

The study reported in this Letter substantially improves
on all the above results. We extend the methods of [11,12]
to compute both antiferromagnetic and ferromagnetic
background amplitudes on the isotropic lattice to O�t14�.
All such terms are seen to be of the form tp�lnjtj�q with
p $ q2. We simultaneously compute high-temperature
series to order 323 and low-temperature series to or-
der 646 in 123 h on a 500 MHz DEC Alpha with 21164
processor running MAPLE™ V version 5.1.

We analyze these series by two independent methods,
making use of the computed background amplitudes and
the known complex singularity structure [9,15] to obtain
the scaling-amplitude functions F6 to O�t14�.

Several important conclusions can be drawn from our
results. First, only pure integer powers of t enter the
© 2001 The American Physical Society
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scaling-amplitude functions and no logarithmic terms are
present. Second, the high- and low-temperature scaling-
amplitude functions are not equal to each other. The ampli-
tudes start to differ at O�t6�. Third, the coefficients of t4

and t5, which are clearly rational, are not those predicted
by simple two-variable scaling [14]. We surmise that at
least two irrelevant operators must be invoked to account
for the above results —one entering at t4, the other at t6.

Further remarks on the scaling implications of our work
can be found in section V, while the remainder of the Letter
will outline the methods by which the ferromagnetic results
were obtained. A fuller account, including details of the
antiferromagnetic singularity, will appear elsewhere.

II. Singularity structure and natural boundary.— It was
argued in [8] that on the anisotropic lattice, the contribu-
tion to the susceptibility of the high-temperature graphs
with 2N vertical bonds contains more and more poles as
N increases, and that in the limit N ! ` these poles form
a dense set in the complex plane. In [9] it was shown that
in the expansion of the susceptibility in j-particle contri-
butions [4]

b21x �

( P
j odd x � j� T . Tc ,P
j even x � j� T , Tc ,

(2)

the higher-particle components give rise to an ever increas-
ing number of singularities that appear to form a dense
set on the circle jsj � 1. In fact, the two phenomena
are precisely correlated, with the former being the highly
anisotropic limit, and the latter the isotropic limit, of the set
of singularities for the generic anisotropic model. These
occur at

cosh�2K� cosh�2K 0� 2 sinh�2K� cos
2pm

j
2

sinh�2K 0� cos
2pm0

j
� 0 , (3)

with m, m0 � 1, 2, . . . j, and K , K 0 � bJx , bJy . It will be
noted that the left-hand side of (3) is the denominator in
the Onsager integral for the free energy and thus we find
the (to us) surprising result that the singularity structure of
x � j�, a property of the Ising model in a magnetic field, is
intimately connected with a property in zero field. Barring
unexpected cancellation in the j ! ` limit (and we have
evidence against this) we believe that this set forms a natu-
ral boundary.

Since the critical point lies on this natural boundary
the expansion (1) cannot be convergent; that (1) defines
an asymptotic expansion is suggested by the following
argument: In the t plane, the singularities defined by (3)
lie on the imaginary t axis and each singularity is a branch
point [9,15]. With the branch cuts chosen to point away
from t � 0 one can show the cumulative discontinuity of
either x1 or x2 across the cut at t � iT , T ! 0, scales
as exp�2a�T 2� with a � 39.76. The contribution of a
cut discontinuity of this form to the coefficient of tp in
(1) is proportional to G�p�2��ap�2 as p ! `. Because
a �� 39.76� is large this contribution is numerically tiny
in all of the series terms we can generate and in particular
we cannot tell whether the divergence with p applies to
the long-distance or the short-distance part in (1), or some
combination of the two. In a practical (numerical) sense
the natural boundary is of no consequence and its very
existence is ignored for the remaining analysis discussed
below.

III. Computation of short-distance amplitudes and
high- and low-temperature series.—The essential tool for
the computation of both the background amplitudes and
the high- and low-temperature series coefficients is the set
of nonlinear partial difference equations for the two-point
correlation functions C�m, n� � �s00smn�, given in [6].
These completely determine all the off-diagonal two-point
functions once the diagonal ones (m � n) are given. The
latter can be computed either by means of an independent
set of difference equations [7] or, as we have done here,
directly from the Toeplitz determinant expressions. The
susceptibility, b21x �

P
�C�m, n� 2 �s00�2�, is com-

puted by successively adding the contributions of pairs of
square shells CN �

P
C�m, n� with jmj 1 jnj � 2N and

jmj 1 jnj � 2N 1 1.
The implementation of the difference equations to obtain

high- and low-temperature expansions is straightforward
using the multiple precision integer arithmetic capabilities
of MAPLE™ or MATHEMATICA™, and the time complexity
is no worse than O�N6�.

The key to computing the short-distance background
amplitudes is to obtain expansions of the partial sums
SN �

PN
n�0 Cn in t directly and to identify which terms

in the series contribute to the short-distance part and which
to the long-distance part. A combination of analytic work
and numerical fitting leads us to a conjecture for the short-
distance expansion of the shell sums, namely

p
s CN � N3�4

X̀
p�0

�lnjNtj�p�Nt�p2

A
� p�
N , (4)

where the A
�p�
N are Taylor series in t with coefficients that

are asymptotic Laurent series in N21; the highest power of
N multiplying tq in A

�p�
N is Nq. The partial sums SN are

p
s SN �

p
s

NX
n�0

Cn �
X
q�0

X
p�q2

R
� p,q�
N tp�lnjtj�q (5)

with R
�p,q�
N functions of N only. Asymptotically, for large

N , R
� p,q�
N is a sum of powers N7�41p0

, with possible mul-
tiplicative ln�N� corrections, plus a constant b�p,q� which
arises from the small n terms in the sum (5) where the
asymptotic expressions are not valid and sum and integral
are not synonymous. The p0 are integers p0 # p.

We must assume that (5) remains valid up to N of the
order 1�t where it can, in principle, be matched term
by term to a large distance expansion that properly de-
scribes the roughly exponential exp�2Nt� decay of cor-
relations as N ! `. Explicit matching formed the basis
of the previous calculations of terms in the short-distance
x (cf. [11,12]) but this becomes extremely cumbersome at
higher order. Here we argue that the exponential decay
4121
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implies a cutoff on N that is proportional to 1�t and that
we can identify the temperature behavior of terms in SN

in Eq. (5) by the replacement N ! 1�t. All terms whose
variation is as a fractional power of t, with possibly loga-
rithmic multipliers, are discarded as assumed contributions
to the long-distance part of x . Clearly all that remains is
the constant part of R

� p,q�
N , namely b� p,q�, and this is ex-

tracted by numerical fitting to give

p
s B �

X
q�0

X
p�q2

b� p,q�tp�lnjtj�q (6)

for the short-distance part of x in Eq. (1). The coefficients
b� p,q� must be determined to very high accuracy to be use-
ful for the subtraction procedure described in the next sec-
tion; the complete list for p , 15 will be given elsewhere.
The result p $ q2 we call the fermionic constraint since
it can be traced back to the Toeplitz determinant that led
to the correlations of the form in Eq. (4).

IV. Scaling amplitudes.—The contribution of the short-
distance terms may now be subtracted from the high- and
low-temperature series, leaving the long-distance part,
from which the scaling amplitudes may be computed
using any of a variety of series analysis techniques. Such
analysis is vastly simplified by the observation that there
are no logarithmic or noninteger power contributions to
the scaling-amplitude functions F6.

To show this, independently of any fitting procedure,
we have noted that any contribution to F6 which is not
a positive integer power of t would manifest itself in the
high order series coefficients of the scaled susceptibility,
�1 2 s64�21�4x6. The 1 1 t�2 terms in F6, as poles
in the scaled susceptibility, also contribute but as their
residues proportional to C06

are known to high precision,
they can be subtracted. The residual coefficients are com-
parable in magnitude to those expected from the first ne-
4122
glected short-distance term which enters at t15. We may
place limits on the size of the amplitudes of any putative
nonanalytic terms in the scaling-amplitude functions. For
example, for terms of the form Aptp lnjtj, the bounds,

jApj , 10235300p�G�p 2 1�, T . Tc , (7)

jApj , 10237600p�G�p 2 1�, T , Tc , (8)

reasonably exclude all p less than about 15.
On purely numerical grounds, the absence of logarith-

mic corrections is surprising since it implies the cancel-
lation of the many logarithmic multipliers in the scaling
terms we discarded in the previous section. On the other
hand, the absence of logarithms appears to be a require-
ment of the combination of the fermionic constraint p $

q2 in (5) and renormalization group scaling as discussed
in the next section.

To compute the coefficients of the integer powers of
t in the scaling-amplitude functions F6, we have car-
ried out two independent analyses, one in the s plane,
the other in the y plane, where y � tanhK is the con-
ventional high-temperature variable. The natural bound-
ary singularities at jsj � 1 are mapped to two circles,
jy 6 1j �

p
2. As they are farther from the origin than the

ferromagnetic and antiferromagnetic singularities at y �
6�

p
2 2 1� their amplitudes are exponentially damped and

may be neglected in the analysis. The s-plane analysis
must take account of these singularities explicitly. The
two analyses are in complete agreement.

We find numerically that the scaling-amplitude functions
multiplied by

p
s appear to be even functions of t, the co-

efficients of the odd terms being comparable in magnitude
to the uncertainties in the even coefficients. The rational
coefficients of t2 and t4 below we conjecture to be exact,
and these values were fixed in the final fitting. The results,
with uncertainty only in the final digits, are
p
s F1 � 1 1 t2�2 2 t4�12 2 0.123 529 228 575 208 666 3t6 1 0.136 610 949 809 095t8

2 0.130 438 972 13t10 1 0.121 512 9t12 2 0.113t14 1 O�t15� ,
p

s F2 � 1 1 t2�2 2 t4�12 2 6.321 306 840 495 936 623 067t6 1 6.251 997 470 460 243 29t8

2 5.689 659 975 618 0t10 1 5.142 218 271t12 2 4.674 72t14 1 O�t15� . (9)
V. Comparison with scaling predictions.—Prior to the
analysis of [15], all known amplitudes were in agreement
with the hypothesis that corrections to scaling were due to
scaling-field nonlinearity, and not to the presence of irrele-
vant variables. Here for the first time, we quantify the error
in this “simple” scaling theory. Ignoring irrelevant opera-
tors, the expressions for the free energy, magnetization,
and susceptibility in zero magnetic field are [14]

f�t� � 2A�a0�t��2 lnja0�t�j 1 A0�t� ,

M�t , 0� � Bb1�t� ja0�t�j1�8,

b21x6�t� � C6�b1�t��2ja0�t�j27�4
(10)

2 Ea2�t�a0�t� lnja0�t�j 1 D�t� ,
where A, B, C6, and E are constants and A0�t� and D�t�
are analytic functions of t. The functions a0�t� and b1�t�
are the leading terms in the expansion of the scaling fields,
and can be determined from the free energy and magne-
tization. The result for x6 is of the form (1) but with F
replacing F6 where

p
s F � 1 1

t2

2
2

31t4

384
1

125t6

3072
1 O�t8� . (11)

Note that this expression should hold in both temperature
regimes.
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The difference between (9) and (11) we believe to be due
to the effects of one or more irrelevant operators, confluent
with the simple scaling terms. As there is no free parameter
to vary in the model, we cannot identify these operators
from the information we have. However, it is likely that
there are at least two mechanisms at work, one entering at
O�t4� which preserves the equality of F1 and F2, and a
second entering at O�t6� which breaks this symmetry. In
order to probe these effects further, we hope to study the
model with anisotropy, and on other periodic lattices.

The corrections to scaling we have found are conflu-
ent with expected analytic terms and in the renormaliza-
tion group picture of scaling this leads to the possibility of
logarithmic terms as well (cf. [16]). Logarithmic correc-
tions are not demanded —the issue is whether the scaling
fields are coupled and this depends on microscopic details.
Barma and Fisher [17] have investigated a model renormal-
ization group flow in detail and conclude that in the case
of a confluence, here labeled by integer index m, one must
expect either no coupling between fields or corrections of
the form �tm logjtj�k to all order k. Since the latter vio-
lates the fermionic constraint mk $ k2 we conclude there
cannot be any logarithmic terms in the scaling-amplitude
function F6 as we have verified to O�t15�.

In conclusion we would like to emphasize the power and
utility of the nonlinear recursion relations [6] in numerical
studies such as we have described. Our results could not
have been obtained without them and since they general-
ize to many-point functions [18] one can begin to consider
analyzing other models such as the “double Gaussian” [17]
to further clarify the nature of corrections to scaling and
test various renormalization group and conformal field the-
ory assumptions.
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