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Mode Locking in ac-Driven Vortex Lattices with Random Pinning
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We find mode-locking steps in simulated current-voltage characteristics of ac-driven vortex lattices
with random pinning. For low frequencies there is mode locking above a finite ac force amplitude, while
for large frequencies there is mode locking for any small ac force. This is correlated with the nature of
temporal order in the different regimes in the absence of ac drive. The mode-locked state is a frozen
solid pinned in the moving reference of frame, and the depinning from the step shows plastic flow and
hysteresis.
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In 1971, Fiory [1] observed steps in the current-
voltage (I-V ) characteristics of ac-driven superconduct-
ing thin films, analogous to the Shapiro steps found in
Josephson junctions [2]. The steps were observed for volt-
ages such that 2p�y��a0 � �p�q�V, with �y� the average
vortex velocity, a0 the triangular vortex lattice period, V

the frequency of the external ac drive, and p, q the integers.
This is a particular case of mode locking, where an inter-
nal frequency of the system (in this case v0 � �y�2p�a0)
locks to a rational multiple of the external frequency.
Several other systems with many degrees of freedom, such
as charge density waves [3,4], spin density waves [5],
Josephson junction arrays [6], and superconductors with
periodic pinning arrays [7,8], also exhibit mode-locking
behavior experimentally. Recently, Harris et al. [9] ob-
served the Fiory steps in YBCO and found that they vanish
when the vortex melting line is crossed. Historically, the
experiment of Fiory motivated the landmark works of
Schmid and Hauger [10] and Larkin and Ovchinikov [11]
on the dynamics of moving vortex lattices. In [10,11]
it was assumed that at large velocities vortices form a
perfect triangular lattice in which the effect of random
pinning could be treated perturbatively. However, it is
now clear that there are several other phases of driven
vortices: plastic flow [12], moving smectic, transverse
moving glass, and moving Bragg glass [13–15], which
have been observed experimentally [16] and in numerical
studies [17,18]. Thus, it may be of interest to study
how the Fiory steps can arise in different moving vortex
phases. Moreover, a peak in the voltage noise power
spectrum at the washboard frequency v0 was recently
observed experimentally [19,20], which is a signature
of temporal order in the moving vortices [15,21]. Here
we study numerically the mode locking in the different
regimes of vortex velocities and its relationship with
temporal order.

The equation of motion of a vortex in position ri is
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where rij � jri 2 rjj is the distance between vortices i, j,
rip � jri 2 rpj is the distance between the vortex i and
a pinning site at rp , h �

F0Hc2d
c2rn

is the Bardeen-Stephen

friction, and F�t� � dF0

c �Jdc 1 Jac cos�Vt�� 3 z is the
driving force due to an alternating current Jac cos�Vt�
superimposed to a constant current Jdc. A 2D thin film
superconductor of thickness d with d ø l, has an ef-
fective penetration depth L � 2l2�d. Since L is of the
order of the sample size, the vortex-vortex interaction
is considered logarithmic: Uy�r� � 2Ay ln�r�L�, with
Ay � F

2
0�8pL [18]. The vortices interact with a random

distribution of attractive pinning centers with Up�r� �
2Ape2�r�j�2

, with j being the coherence length. Length is
normalized by j, energy by Ay , and time by t � hj2�Ay .
We consider Ny vortices and Np pinning centers in a rect-
angular box of size Lx 3 Ly , and the normalized vortex
density is ny � Nyj2�LxLy � Bj2�F0. Moving vor-
tices induce a total electric field E � B

c v 3 z, with v �
1

Ny

P
i vi .

The Fiory steps are less trivial than the steps observed in
Josephson arrays [6] and in periodic pinning arrays [7,8]
where there is a built-in periodicity. In the present case a
periodicity can only be induced dynamically by the vortex-
vortex interaction Uy�rij� which favors a triangular lat-
tice with period a0. In principle, a uniform motion of this
lattice at a velocity y will feel the effect of a weak pin-
ning Up�rip� as an ac velocity component with frequency
v0 � 2p�y��a0 [10,11]. The interference with an ac force
with frequency V leads naturally to steps of constant ve-
locity Vp,q �

p
q

a0

2p V. Even when the presence of pinning
is essential for this effect, both v0 and Vp,q do not de-
pend on the pinning parameters but only on the periodicity
a0. However, the moving vortex phases can be disordered
[13–18] and thus this simple picture needs to be revised.
© 2001 The American Physical Society
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We study the response of the vortex lattice to an external
ac 1 dc force of the form F � �Fdc 1 Fac cos�Vt��y [22]
at T � 0, solving Eq. (1) for different values of Fac and V.
The simulations are for constant vortex density ny � 0.04
in a box with Lx�Ly �

p
3�2, and Ny � 64, 100, 144,

196, 256, and 400 (we show results for Ny � 256), and
we consider the weak pinning strength of Ap�Ay � 0.05
with a density of pinning centers being np � 0.08
(dense pinning, np . ny , is typically realized in ex-
perimental samples). Other values of Ap , np within the
weak and dense pinning regime give similar results. We
impose periodic boundary conditions, and the resulting
long-range interaction is determined by Ref. [23]. We
use a time integration step of Dt � 0.001t and averages
are evaluated during 131 072 steps after 3000 steps
for equilibration.

Let us first review the behavior for Fac � 0. There
are three dynamical regimes when increasing Fdc above
the critical depinning force, Fc, in the case Fac � 0:
plastic flow for Fc , Fdc , Fp , smectic flow for
Fp , Fdc , Ft , and a transverse solid for Ft , Fdc (see
[18]). The characteristic forces in our case are Fc � 0.15,
Fp � 0.6, and Ft � 1.2. Since the nature of mode
locking is related to the existence of temporal order at
the washboard frequency v0 we analyze the voltage noise
Sy� f� � j

1
T

RT
0 dt �Vy�t� 2 V � exp�i2pft�j2 in each dy-

namical regime. In the insets of Figs. 1(a)–1(c) we show
the spectral densities corresponding to each regime and
we indicate the corresponding v0. In the inset of Fig. 1(a)
we see that there is no temporal order at the washboard
frequency, and only the typical broadband noise of plastic
flow is observed [12,20]. For the smectic flow regime,
we see in the inset of Fig. 1(b) that there is a small and
broad peak at v0. Only for large forces, F . Ft , in the
transverse solid regime do well-developed peaks appear
at the washboard frequency [20] and harmonics [see the
inset of Fig. 1(c)].

We now study the response of each of these dynamical
regimes with velocity V � V �Fdc� to the superimposed ac
force Fac cos�Vt�, for varying values of Fac for a given
V. We expect the main interference step �p � q � 1� to
occur when V � Vstep � Va�2p (i.e., V � v0) if there
is mode locking. We therefore choose the values of V

such that the expected step, Vstep � Va�2p , would cor-
respond to velocities V belonging to a given dynamical
regime of the limit Fac � 0. Each simulation is started
at �yy� � 0.975Va�2p with an ordered triangular lattice
up to values such that �yy� � 1.025Va�2p by slowly in-
creasing the dc force Fdc with DFdc � 0.001. For low
V, for which we have plastic flow when Fac ! 0, we
find that there are no interference steps in a wide range
of Fac [shown in Fig. 1(a) for Fac�Vstep , 1 (left curve)
and Fac�Vstep . 1 (right curve)]. This is consistent with
the observed lack of temporal order in the inset of Fig. 1(a)
and indicates that very large Fac are possibly needed in or-
der to induce mode locking. For intermediate V, for which
FIG. 1. Velocity-force curve around the main interference con-
dition V � Va0�2p for three typical drive frequencies V. Each
case shows results for two values of amplitude Fac (the curves
are shifted in Fdc for clarity). The insets show corresponding
voltage power spectrum for Fac � 0 and V � Vstep. The verti-
cal dash-dotted lines in the spectral density indicate the wash-
board frequency. (a) V � 0.5, Fac � 0.4 (left), and Fac � 1.8
(right). (b) V � 1, Fac � 0.4 (left), and Fac � 3 (right).
(c) V � 2.5, Fac � 0.75 (left), and Fac � 4 (right).

we have smectic flow when Fac ! 0, we find that there are
no steps for small amplitudes, Fac�Vstep , 1, while there
are steps for Fac�Vstep . 1, as shown in Fig. 1(b) in the
left and right curves, respectively. This means that the
small washboard peak observed in the inset of Fig. 1(b) is
not large enough to induce mode-locking steps for small
Fac. However, this short-range temporal order can be am-
plified for intermediate values of Fac giving place to steps
in this case. For high V, corresponding to a transverse
solid regime when Fac ! 0, we find that there are steps
both for small Fac�Vstep , 1 and for large Fac�Vstep . 1
values of the ac amplitude, as we can observe in Fig. 1(c).
This is in agreement with the Fac � 0 spectral response
observed in the inset of Fig. 1(c). In this case, the tempo-
ral order is robust enough for mode locking to be produced
by small values of Fac.

Let us now examine in detail the dynamics and the struc-
tural order within (and in the vicinity of) a mode-locked
step, in the transverse solid case. In Fig. 2(a) we show
a typical V 2 Fdc curve around the step. In the inset of
Fig. 2(a) we show a finite size analysis of the step width
for Ny � 64, 100, 144, 196, 256, and 400, where the error
bars are due to the observed dependence of the width in
three different realizations of disorder. We observe that for
Ny . 256 the step width tends to a size-independent value.
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FIG. 2. (a) Velocity-force curve around the main interference
step for V � 5 and Fac � 6. The inset shows the finite size
dependence of the step width. (b) Time averaged quadratic mean
displacements in the longitudinal direction �wy�t��, ��� points,
and in the transverse direction �wx�t��, ��� points. The dash-
dotted line indicates a2

0 . (c) Intensity of the Bragg peaks. For
smectic ordering S�G1�, Ky � 0: �1� points. For longitudinal
ordering S�G2,3�, Ky � 0: ��� points.

We define the quadratic mean displacements of vortices
in directions parallel, wy�t�, and perpendicular, wx�t�, to
the external force, calculated from the center of mass po-
sition �Xcm�t�, Ycm�t�� as wx�t� �

1
Ny

P
i �x̃i�t� 2 x̃i�0��2

and wy�t� �
1

Ny

P
i � ỹi�t� 2 ỹi�0��2, where x̃i�t� �

xi�t� 2 Xcm�t� and ỹi�t� � yi�t� 2 Ycm�t�. In Fig. 2(b)
we show the time average of these quantities, �wx�t�� and
�wy�t��, as a function of Fdc. Outside the step we observe
that the transverse mean displacement (TMD) is limited
�wx�t�� ø a2

0, while the longitudinal mean displacement
(LMD) is unbounded �wy�t�� ¿ a2

0 . This corresponds to
a state with only longitudinal diffusion (i.e., a transverse
solid [18]). Noticeably, in the transition to the synchro-
nization, the LMD freezes in a value, �wy�t�� ø a2

0 , while
the TMD remains practically constant. This mode-locking
longitudinal freezing can also be observed as a dramatic
decrease of the low frequency voltage noise in both
directions. The mode-locked state is therefore a frozen
solid. To study the translational order we calculate the
structure factor as S�k� � �j 1

Ny

P
i exp�ik ? ri�t��j2�. In

this regime there are smectic order peaks of magnitude
Ss � S�G1� with G1 � �62p�a0, 0� and longitudinal
peaks of magnitude Sl � �S�G2� 1 S�G3���2 with G2 �
62p�a0�1�2,

p
3�2� and G3 � 62p�a0�21�2,

p
3�2�.

In Fig. 2(c) we plot Ss and Sl . We do not observe any im-
portant change in the transition to the mode-locked state.
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Inside the steps we observe jumps in Sl , indicating that
there are different metastable mode-locked structures. In
Fig. 3 we analyze in detail the process of depinning from
the step. We show a detailed view of the V 2 Fdc curve
in the transition from the synchronized regime. Varying
Fdc back and forth, we observe a clear hysteresis cycle.
In the lower right inset of Fig. 3 we show the evolution
of wy�t� with time inside and outside the step. While
wy�t� ø a0 for all t inside the step, outside there is ballis-
tic diffusion wy�t� 	 t2. To visualize the spatial structure
in the transition we define a coarse-grained vortex density
r0

y�r, t� seen from a system of reference moving with
velocity Vstep as follows: r0

y�r, t� �
1

Ny

P
i d�r 2 r0i�t��,

where r0i�t� � ri�t� 2 yVstept. We take a coarse-graining
scale Dr , a0. In the upper left insets of Fig. 3 we
show the temporal average �r0

y�r, t�� of the density, inside
(mode locked) and outside (mode unlocked) the step. This
quantity shows the stationary trajectories of vortices seen
from a frame of reference moving with velocity Vstep.
Inside the step we see that the vortices are localized,
oscillating around their “equilibrium” positions in the
moving frame. This is in agreement with the frozen solid
inferred from Fig. 2(b), which is “pinned” in the moving
frame. Just above the depinning from the step we see that
some vortices delocalize following straight trajectories
parallel to the force around pinned vortices, producing
coexistence of mode-locked and mode-unlocked channels
of flow. This could be interpreted as a one-dimensional
“plastic” depinning from the step.

Mode locking of the steps in the V 2 Fdc curve
can be characterized qualitatively by how the dc cur-
rent range in mode locking depends on Fac and V,
(see [6–8]). In Figs. 4(a) and 4(b) we show the range
(width) DFdc for the case Fp , Fdc , Ft and Ft , Fdc,

FIG. 3. Velocity-force curve around the depinning from the
main step for V � 5 and Fac � 6. The upper left insets
show typical time averaged coarse-grained density of vor-
tices seen from a system of reference moving with velocity
ystep � Va0�2p, for a mode-locked state Fdc � 4.045 (left)
and for an unlocked state Fdc � 4.085 (right). The lower
right inset shows the corresponding typical quadratic mean
longitudinal displacements for both cases. The dotted line
indicates a2

0.
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FIG. 4. Step width DFdc vs Fac2p�Va0 � Fac�Vstep.
(a) V � 1. (b) V � 5, ��� points, and V � 2.5, ���
points. The dashed line shows a fit to AjJ1�Fac�Vstep�j and the
dot-dashed line shows a fit to BjJ1�Fac�Vstep�j2.

respectively. The error bars and the mean values were
estimated by repeating the simulation for three differ-
ent disorder realizations. In Fig. 4(a) we show DFdc
for V � 1 vs Fac, which corresponds to the smectic flow
regime for Fac ! 0. We see that there is mode locking
above a finite critical value Fac�Vstep � 1 [see Fig. 1(b)].
For larger amplitudes we were not able to obtain a sys-
tematic dependence on amplitude because the step widths
depend strongly on the disorder realization in this case. In
Fig. 4(b) we show DFdc for two frequencies V � 2.5, 5
vs Fac, which correspond to the transverse solid in the
Fac � 0 limit. We can collapse (approximately) both
curves into a single curve if we plot DFdc vs Fac�Vstep.
Schmid and Hauger [10], using a perturbative approach,
found a dependence DFdc 	 �1�C66� jJ1�Fac�Vstep�j2,
where Vstep � a0V�2p and C66 is the shear modulus.
Strikingly, our results seem to follow more closely a
dependence of the form DFdc � AjJ1�Fac�Vstep�j with
A being a constant, which is the dependence found in
the one-dimensional problem of an overdamped single
Josephson junction or a particle moving in a periodic
potential. This linear dependence of the mode-locking
intensity with Fac could be a consequence of the existence
of temporal order in the Fac � 0 limit. This was not taken
into account in the perturbative calculation of Schmid
and Hauger, where mode locking arises as a second
order effect.

In conclusion, it is possible to have mode locking in
driven vortices with random pinning for high enough fre-
quencies, in agreement with the experiments of Fiory [1]
and Harris et al [9]. The mode-locked state can be viewed
as a frozen solid pinned in the moving frame of reference,
and the depinning from mode locking is plastic and hys-
teretic. Also, the response to an ac drive for different fre-
quencies can be an interesting experimental probe of the
dynamical regimes of driven vortices.
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