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Aharonov-Bohm Effect for Quasiparticles around a Vortex Line in a d-Wave Superconductor
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On the basis of the Bogoliubov–de Gennes theory we develop an analytical description of low-energy
extended quasiparticle states around an isolated flux line in a superconductor with gap nodes. The wave
functions of these excitations and the corresponding density of states are shown to be strongly influenced
by the interaction with a pure gauge potential due to the Aharonov-Bohm scenario.
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Understanding the nature of low-energy quasiparticle
(QP) states in isolated vortices and vortex lattices of type-II
superconductors is of considerable importance since for
low temperatures T these states impact on various static
and dynamic properties. The flux lines affect the QP ex-
citations through the following mechanisms: (i) QP scat-
tering on the gap inhomogeneity in vortex cores (which
results in formation of localized core states in s-wave com-
pounds) [1]; (ii) QP scattering on the potential proportional
to the superfluid velocity Vs [2]; (iii) long-range magnetic
field effects which are responsible for a finite curvature of a
quasiclassical trajectory in a vortex lattice [3]; (iv) interac-
tion with a pure gauge potential due to the Aharonov-Bohm
(AB) scenario [2,4–8] which is known to describe the ac-
tion of the enclosed fluxes on the quantum interference of
charged particles [9]. For conventional s-wave supercon-
ductors these mechanisms have been studied for several
decades, and now one may conclude that the physical pic-
ture of the electronic structure of the mixed state in s-wave
systems is rather clear. The situation is dramatically differ-
ent in superconductors with gap nodes where the vanishing
pair potential in the nodal directions results in qualitative
changes in quantum mechanical motion of QPs. The in-
terest to these fundamental issues is stimulated by recent
experimental observations of unconventional behavior of
QP excitations in the mixed state of high-Tc compounds
[10,11] where the dominating order parameter (OP) is be-
lieved to be of d-wave symmetry.

In this Letter we focus on the quantum mechanical ef-
fects caused by the interaction of QPs with pure gauge
potentials induced by flux lines. The AB scattering of elec-
tronic excitations by singly quantized vortices in s-wave
superconductors was analyzed by Cleary [2] in 1968. The
importance of the AB mechanism for the understanding of
the origin of the Iordanskii force acting on a moving vortex
line in a superfluid has been pointed out in [5]. Recently
the significance of the AB effect was addressed in a num-
ber of papers devoted to the calculations of the QP band
spectrum [6,7] and thermal conductivity [8] in the mixed
state (Hc1 ø H ø Hc2) of high-Tc cuprates. The main
goal of our theoretical analysis is to show that contrary to
the s-wave case the AB effect plays a crucial role in the
behavior of low-lying QP states in d-wave compounds.
108 0031-9007�01�86(18)�4108(4)$15.00
Let us consider a single isolated vortex line which carries
the flux quantumf0 � p h̄c�jej. Because of the Meissner
effect a magnetic field H is screened at the London pene-
tration depth lL and at large distances from the vortex
center r ¿ lL the vector potential takes the form A �
f0�z0, r���2pr2�, where �z0, r� is a vector product of vec-
tors z0 and r, and z0 is a unit vector chosen along the vor-
tex axis. Such a vector potential cannot be excluded from
the Bogoliubov–de Gennes (BdG) equations (describing
the quantum mechanics of QPs) using any single-valued
gauge transformation. Note that within the standard Schrö-
dinger theory for a particle with a charge e an AB solenoid
with a magnetic flux F � f0 is known to be the most ef-
fective scatterer [9]. However, for s-wave superconductors
the effect of the AB potentials on the QP density of states
(DOS) should be rather small. The point is that the size of
the semiclassical wave packet propagating outside the flux
tube (i.e., in the region r ¿ lL) appears to be much less
than the impact parameter. As a result, the interference
effects are small and can be neglected. As we see below,
such a conclusion is no more valid if we consider supercon-
ductors with gap nodes. Hereafter we assume Fermi sur-
face (FS) to be two-dimensional (2D), which is appropriate
to high-Tc superconductors, and take the gap function in
the general form Dd � 2D0F�k�kxky�k2

F , where the real
function F�k� has the tetragonal symmetry of the normal
metal, D0 is the gap maximum, the x axis is taken along
the [110] crystal direction. In contrast to conventional su-
perconductors, the DOS at low energies ´ in d-wave sys-
tems is dominated by contributions which come from the
regions far from the cores [12] and associated with ex-
tended QP states with momenta close to the nodal direc-
tions. This conclusion based on the semiclassical approach
has been confirmed by the recent numerical analysis [13]
of the BdG equations for a single isolated vortex line (in
the limit lL ! `). Note that the calculations presented in
[13] also point to the absence of truly localized core states
or any resonant levels in the pure d-wave case though such
states were observed in numerical simulations [14].

Let us start with some qualitative arguments which
indicate a significance of pure gauge potentials in the
quantum mechanics of extended QP excitations. In the
homogeneous state the low-energy excitations (confined to
© 2001 The American Physical Society
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one of the gap nodes) are described by a Dirac-like spec-
trum, ´6 � 6h̄

p
V 2
Fq

2
� 1 V 2

Dq
2
k
, where VF is the Fermi

velocity, and �qk,q�� defines a coordinate system whose
origin is at the node, with q� (qk) normal (tangential) to
the FS. The VD value characterizes the gap slope near the
node. For the simplest gap function with F�k� � 1 the
Dirac cone anisotropy a � VF�VD is determined only
by the ratio of the coherence length j � h̄VF�D0 to the
Fermi wavelength (a � kFj�2) while for a more general
case the parameter a depends also on the F�k� value at
the node. One can separate the following length scales for
QP wave functions: an atomic length scale k21

F and two
characteristic wavelengths of a slowly varying envelope
l� � q21

� � h̄VF�´, lk � q21
k � h̄VD�´. The length

scales l� and lk determine the size of the semiclassical
wave packet, which appears to diverge in the low-energy
limit. Such a divergence is responsible for a crucial role
of quantum mechanical effects in QP motion and, in par-
ticular, for the extremely large AB scattering amplitude.

Our further consideration of the low-energy QP states
(j´j ø D0) with momenta locked to the nodes is based on
the essentially 2D quantum mechanical model proposed
by Simon and Lee [15]. For QPs with momenta close to
a certain gap node direction [e.g., k1 � �kF , 0�] one can
divide out the fast oscillations on a scale k21

F in the par-
ticlelike and holelike parts of the wave function �u,y� �
�ũ, ỹ� exp�ik1r� and simplify the nonlocal off-diagonal
terms in BdG equations (see [6–8,15,16] for details).
Let us introduce the gap function describing the mixed
state in the form D�k, R� � Dd�k�C�R�, where C�R� �
f exp�ix� is the OP used in the Ginzburg-Landau the-
ory. The BdG equations for QP wave functions ĝ �
���ũ exp�2ix�, ỹ��� read ĤSLĝ � ´ĝ [17]. Outside the cores
the Hamiltonian ĤSL linearized in gradient terms takes
the form ĤSL � Ĥ0 1 jejw, where Ĥ0 � VFŝzp̂x 1
VDŝxp̂y , p̂ � 2ih̄= 1 h̄=x�2, ŝx , ŝz are the Pauli
matrices, w � MVFVsx�jej is the Doppler shift of the QP
energy, M is the electron effective mass, Vs � Vsxx0 1

Vsyy0, x0, y0, z0 are the unit vectors of the coordinate sys-
tem with z0 chosen along the c axis. The Vs field can be
written as a superposition of contributions from individual
vortices situated at points ri : Vs�r� � h̄

P
i K1�jdij� 3

�z0, ei���2MlL�, where di � �r 2 ri��lL, K1 is the
Mcdonald (modified Bessel) function of the first order,
ei � di�jdij. In this expression we neglect the effects
of nonlocal electrodynamics [19] which are known to be
small far away from the core. Our equations are analogous
to the ones describing the quantum mechanical motion
of a massless Dirac particle with a charge jej in the
“vector potential” a � 2f0=x��2p� of AB solenoids
and the scalar potential w of 2D “electrical dipoles”
screened at a length scale lL. Both the solenoids and the
dipoles are positioned at ri . Each solenoid carries the flux
quantum f0. The expression for a dipole moment reads
P � 20.5h̄VFy0�jej. The Hamiltonian ĤSL provides
a simple tool for the study of 2D quantum mechanical
effects in the QP motion and has recently been used as
a starting point for the analysis of the band spectrum
in regular vortex arrays with a rather small intervortex
distance Ry ø lL [6,7,16].

Isotropic Dirac cone.—Let us focus on the case of a
single isolated vortex line. We start our analysis from
the simplest isotropic limit VF � VD � V (isotropic Dirac
cone) and show that the low-energy QP states near each
node are strongly influenced by the pure gauge potential a
due to the AB scenario. Indeed, if we neglect the potential
of a 2D electric dipole in ĤSL, the scattering cross section
of a Dirac fermion in the AB potential appears to diverge
for ´ ! 0: ds

du ~ ´
21 [20]. Introducing a polar coordinate

system �r , u� with the origin at the vortex center and tak-
ing the OP phase in the form x � u one can obtain the
eigenfunctions of the Hamiltonian Ĥ0 in the angular mo-
mentum representation:

ĝ�1�
m ~ �1 1 iŝx�

s
k
L

√
eimuJm11�2�kr�

sgn´ ei�m11�uJm13�2�kr�

!
, (1)

ĝ�2�
m ~ iŝye

2iu�ĝ�1�
m ��, (2)

where Jn is the nth Bessel function, m is an integer, j´j �
´k � h̄Vk, and L is the system size. Note that a full QP
wave function �u,y� � �ũ�1,2�

m , ỹ
�1,2�
m � exp�ik1r� [with the

envelopes ũ
�1,2�
m , ỹ

�1,2�
m determined by Eqs. (1) and (2)] is

not an eigenfunction of the angular momentum operator,
which is an obvious consequence of the noncommutability
of the angular momentum and the d-wave gap operators.
QP states confined near each node provide the following
contribution to the local DOS:

N �
X
m

L
2p

Z
dk�jũmj2d�´ 2 ´k� 1 jỹmj

2d�´ 1 ´k�� .

(3)

The wave functions ĝ
�1�
m and ĝ

�2�
m with m $ 0 are regular

at the origin. The local DOS corresponding to a set of
these regular solutions vanishes in the region r , h̄V�j´j
and approaches the value N` ~ j´j for r ¿ h̄V�j´j (N`
is the DOS in the absence of vortices). The solutions with
negative m diverge at the origin and are responsible for
the formation of the nonzero DOS near the vortex inside
the domain r , h̄V�j´j. Thus, the residual DOS N0 �
N�´ � 0� is also determined by the states with m , 0.
The crucial role in the formation of the residual DOS is
played by the states g�1�

21 and g�2�
21 which appear to decay

most slowly from the vortex center (as r21�2) in the limit
´ ! 0. Using (3) one can obtain N0 � �h̄Vr�21. Let
us emphasize that this contribution appears to be nonzero
even in the large-r domain (r . lL) in sharp contrast to
the behavior expected on the basis of the semiclassical
model which takes account of the Doppler term jejw and
neglects the AB effect.

We now proceed with the analysis of the effect of the
Doppler term in the Hamiltonian ĤSL on the behavior of
4109
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wave functions in the small-r domain (r , lL). For low
energies ´ ø h̄V�lL the regular solutions (1) and (2) with
m $ 0 are only weakly influenced by the w potential. On
the contrary, for the wave functions (1) and (2) with nega-
tive m the potential w cannot be considered as a small
perturbation. In the limit ´ ø h̄V�lL the solutions in the
domain r , lL can be written in the form

ĝm � �1 1 iŝx�rm11�2 exp�2iu�1 1 ŝz��2�Ĝm�u� ,
(4)

where the equation for Ĝm�u� reads

i
≠

≠u
Ĝm 1 �1 1 m�ŝzĜm 1

sinu
2
ŝxĜm � 0 . (5)

A set of discrete quantum numbers m is determined by the
condition Ĝm�u� � Ĝm�u 1 2p�. In the large-jmj limit
the m values can be calculated using the quasiclassical

quantization rule,
R2p

0

q
�1 1 m�2 1

1
4 sin 2u du � 2pn,

where n is an integer. The residual DOS near the vor-
tex center is dominated by the states (4) with m , 21�2,
which are characterized by the power divergence at r ! 0.
The divergence should be cut off due to the matching with
the solution inside the core, which results in a mixing of
QP wave functions characterized by differentm values and
corresponding to all four nodes. Outside the core the most
slowly decaying wave functions correspond to the value
m � 21 and can be found exactly using Eq. (5):

Ĝ
�1�
21 � C�cosg,2i sing�, Ĝ

�2�
21 � iŝy�Ĝ�1�

21��,
(6)

where g � cosu�2, and the constant C ~ L21�2 is deter-
mined from the matching with the solution in the large-r
domain (r . lL). One can see that for intermediate
distances j ø r ø lL these states provide a dominating
contribution to the residual DOS N0 � �h̄Vr�21, which
coincides with the one predicted on the basis of the
semiclassical model [12]. The admixture of the solutions
decaying more rapidly from the vortex axis becomes
substantial near the core, and can result in a narrow DOS
peak similar to the one observed in high-Tc compounds
[11]. Despite a possible formation of such a peak structure
the resulting low-energy states are not truly localized. The
wave functions ĝ

�1�
21 and ĝ

�2�
21 can be considered as leading

terms in a large distance (r ¿ j) asymptotic expansion
for the low-lying states and, thus, are responsible for the
escape of QPs from the core. For these functions the
generalized inverse participation ratio, defined as [13]
b ~ �jũj4 1 jỹj4	 ? �jũj2 1 jỹj2	22 (angular brackets
stand for spatial averages), appears to grow logarithmically
with an increase in L. The b ~ L2 divergence expected
for localized states is absent in a good agreement with the
numerical analysis [13] carried out in the limit L ø lL.

Anisotropic Dirac cone.—The physical picture sug-
gested above can be generalized for the case of an aniso-
tropic spectrum VF fi VD. Such a generalization is
of particular importance for high-Tc cuprates, where
4110
estimates based on the results of thermal conductiv-
ity measurements [21] give us rather large anisotropy
parameters: a � 14 for YBaCuO and a � 19 for
BiSrCaCuO. Taking an appropriate gauge transformation
ĝ � eiSf̂ one can choose the vector potential a in the
Hamiltonian Ĥ0 in the form a � f0a�r, z0���2p r̃2�,
where r̃2 � x2 1 �ay�2. Using the scale transformation
(ay � ỹ, x � x̃) the Hamiltonian Ĥ0 can be reduced to
the isotropic one with V � VF . In the new coordinates
the solution f̂ in the large-r̃ domain (where the Doppler
shift is negligible) can be written in the form (1) and
(2). The small distance asymptotic expansion can be
analyzed analogously to the isotropic case. The most
slowly decaying solutions can be obtained from (4) and
(6) if we replace u and r by ũ � tan21� ỹ�x̃� and r̃ ,
respectively, and take g � 0.5at21 tan21�t cosũ�, where
t �

p
a2 2 1. Outside the core the expression for the

residual DOS (taking account of the contributions from
all four nodes) reads

h̄N0 � �V 2
Dx

2 1 V 2
Fy

2�21�2 1 �V 2
Dy

2 1 V 2
Fx

2�21�2.
(7)

The angular dependence (7) is strongly determined by the
Dirac cone anisotropy. For a fi 1 the local DOS exhibits a
fourfold symmetry with maxima along the nodal directions
(see Fig. 1).

Neither the power law decay of N0�r� nor the fourfold
anisotropy (which should be rather strong for a values
mentioned above) have been observed within the experi-
mental resolution in scanning tunneling microscopy (STM)
studies of high-Tc compounds [11]. Such a conflict with
the existing STM data is probably explained by the follow-
ing reasons: (i) at large distances r from the vortex cen-
ter the contribution of the extended states to the tunneling
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FIG. 1. The angular dependence of the residual DOS
N0�u��N0�u � 0� in polar coordinates for a � 5 (dashed line)
and a � 20 (solid line).



VOLUME 86, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 APRIL 2001
conductance may be suppressed due to the finite lifetime
effects and the anisotropy of the tunneling matrix element
[22]; (ii) at rather small distances r a partial suppression of
the DOS contributions from nodal QP states and a resulting
reduction of the DOS anisotropy is probably caused by the
generation of a secondary OP component (see [23] and ref-
erences therein). The relative phase between the coexist-
ing OP components (s and d or dx22y2 and dxy) is spatially
dependent. As a consequence, four k-space nodes of the
local pair potential D�k, r� are removed into the extended
�k, r� space (see also [24]) with the formation of pointlike
zeros at ri�kF� in D�k, r�. The resulting OP D�k, r� ap-
pears to be nodeless over most of the vortex core [23] (and,
in particular, along the x and y axes). Obviously, such an
OP structure near the core should partially suppress the
DOS contribution (7) (which comes from the nodal QP
states in a pure d-wave case) and can result in a reduction
of the DOS anisotropy. However, the secondary OP com-
ponent is known to decay rapidly outside the core [23] and,
as a consequence, we can conclude that the anisotropic
DOS contributions discussed above might become observ-
able in the domain r ¿ j in the cleanest samples.

Multiquanta flux structures.—For a vortex carrying an
odd number Mf of the flux quanta the effect of the AB
potential on the local DOS outside the flux tube (r . lL)
is the same as for a singly quantized vortex. On the con-
trary, a vortex with an even winding number Mf does not
cause the AB interference and, thus, cannot provide the
slowly decaying DOS contribution (N0 ~ r21). The most
direct way to observe this odd-even effect is to consider a
hollow cylinder with a trapped magnetic flux F. The AB
mechanism is the cause of an oscillating dependenceN0�F�,
which should be observable by any experimental technique
sensitive to the residual DOS. The amplitude of these os-
cillations in the DOS integrated over the sample is pro-
portional to the system size L. The large odd-even effect
in the DOS is specific for superconductors with gap nodes
and can be considered as a test for d-wave pairing. Ob-
viously, the magnitude of such odd-even effect is strongly
influenced by finite lifetime and temperature effects which
should suppress the DOS contribution (7) in the domain
r . h̄VF� max�G,T �, where G is a scattering rate.

To summarize, we developed a 2D quantum mechanical
description of extended QP states for an isolated flux line
in a superconductor with gap nodes, taking account of both
the Doppler shift of the QP energy and the AB effect. It
is hoped that the physical picture considered in this Letter
can provide a starting point for the analysis of static and
dynamic properties of the mixed state in various d-wave
systems, including, probably, high-Tc copper oxides.
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