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We analyze the proximity effect in a superconductor/ferromagnet (S/F) structure with a local inhomo-
geneity of the magnetization in the ferromagnet near the S/F interface. We demonstrate that not only the
singlet but also the triplet component of the superconducting condensate is induced in the ferromagnet
due to the proximity effect. The singlet component penetrates into the ferromagnet over a short length
jh �

p
D�h (h is the exchange field and D the diffusion coefficient), whereas the triplet component

penetrates over a long length
p

D�e and leads to a significant increase of the ferromagnet conductance
below the superconducting critical temperature Tc.
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In recent experiments on superconductor/ferromagnet
(S/F) structures a considerable increase of the conductance
below the superconducting critical temperature Tc was ob-
served [1–3]. Although in a recent work [4] it was sug-
gested that such an increase may be due to scattering at
the S/F interface, a careful measurement of the conduc-
tance demonstrated that the entire change of the conduc-
tance was due to an increase of the conductivity of the
ferromagnet [1,2].

Such an increase would not be a great surprise if in-
stead of the ferromagnet one had a normal metal N. It is
well known (see for review [5,6]) that in S/N structures
proximity effects can lead to a considerable increase of
the conductance of the N wire provided its length does
not exceed the phase breaking length Lw . However, in
a S/F structure, if the superconducting pairing is singlet,
the proximity effect is negligible at distances exceeding a
much shorter length �jh. This reduction of the proximity
effect due to the exchange field h of the ferromagnet is
clear from the picture of Cooper pairs consisting of elec-
trons with opposite spins. The proximity effect is not con-
siderably affected by the exchange energy only if the latter
is small h , Tc. As concerns such strong ferromagnets as
Fe or Co used in the experiments [1,2], whose exchange
energy h is by several orders of magnitude larger than Tc,
a singlet pairing is impossible due to the strong differ-
ence in the energy dispersions for the two spin bands. At
the same time, an arbitrary exchange field cannot destroy
a triplet superconducting pairing because the spins of the
electrons forming Cooper pairs are already parallel. A pos-
sible role of the triplet component in transport properties
of S/F structures has been noticed in Refs. [7,8], where
the triplet component arose only as a result of mesoscopic
fluctuations. However, in both cases the corrections to the
conductance are much smaller than the observed ones.

In this paper, we suggest a much more robust mecha-
nism of formation of the triplet pairing in S/F structures,
which is due to a local inhomogeneity of the magnetization
0031-9007�01�86(18)�4096(4)$15.00
M in the vicinity of the S/F interface. We show that the
inhomogeneity generates a triplet component of the super-
conducting order parameter with an amplitude comparable
with that of the singlet pairing. The penetration length
of the triplet component into the ferromagnet is equal to
j´ �

p
D�´, where the energy ´ is of the order of tem-

perature T or the Thouless energy ET � D�L2, L is the
sample size. The length j´ is of the same order as that for
the penetration of the superconducting pairs into a normal
metal and therefore the increase of the conductance due to
the proximity effect can be comparable with that in an S/N
structure.

We consider a structure shown in Fig. 1 and assume that
the magnetization orientation varies linearly from a � 0
at x � 0 to aw � Qw at x � w. Here a is the angle be-
tween M and the z axis. The case Qw � p corresponds
to a domain wall with thickness w located at the S/F in-
terface, while the model with the homogeneous magneti-
zation is recovered by putting Q � 0. This variation of M
may also be brought about by an external magnetic field
(see [9], and references therein). Of course, the variation
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FIG. 1. Schematic view of the structure under consideration.
In the inset is shown the structure, for which we calculate the
conductance variation: two ferromagnetic wires connected to
two ferromagnetic and two superconducting reservoirs.
© 2001 The American Physical Society
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of the magnetization considered is the simplest model of
what may happen at the interface in reality and we use it for
simplicity. We consider the diffusive limit corresponding
to a short mean free path. In this limit one may describe the
S/F structure using the Usadel equation [10]. The proxim-
ity effect in a S/F structure with a uniform magnetization
M was analyzed in [11]. For the system with a nonhomo-
geneous magnetization one should use a generalized form
of this equation containing spin variables [12]. The equa-
tion is nonlinear and contains normal ǧ and anomalous
f̌ quasiclassical Green’s functions. These functions are
4 3 4 matrices in the Nambu ≠ spin space.

Assuming that the anomalous condensate function f is
small, one can linearize the Usadel equation. This can be
done if the transmission coefficient through the S/F in-
terface is small due to a strong mismatch of the Fermi
surfaces. Moreover, the order parameter in the supercon-
ductor can be strongly suppressed near the S/F interface if
the transparency is high. In both cases one may assume a
weak proximity effect, which presumably corresponds to
the experiments. We write the Usadel equation for the ma-
trix element (12) of f̌ in the Nambu space. Then for the
retarded matrix (in the spin space) Green’s function f̂R we
obtain (the index R is dropped)

2iD≠2
r f̂ 1 2ef̂ 2 2Dŝ3 1 � f̂V̂ � 1 V̂ f̂� � 0 . (1)

Here e is the energy, D is the superconducting order pa-
rameter, which vanishes in the ferromagnet; ŝi are the
Pauli matrices in the spin space, and the matrix V̂ is de-
fined as V̂ � h�ŝ3 cosa 1 ŝ2 sina�, where a varies with
x as shown in Fig. 1. This matrix describes the interaction
between the exchange field and spins of the conduction
electrons and vanishes in the superconductor. Equation (1)
could be written for temperature anomalous Green func-
tions f̂M at Matsubara frequencies v, by replacing e !
ijvj and multiplying the last term by sgn�v� [12]. Equa-
tion (1) is supplemented by the boundary conditions at
the interface that can also be linearized [13]. Assuming
that there are no spin-flip processes at the S/F interface,
we have

≠xf̂jx�0 � �r�Rb�f̂S , (2)

where r is the resistivity of the ferromagnet, Rb is the
S/F interface resistance per unit area in the normal state,
and fS � ŝ3D�

p
e2 2 D2. The solution of Eq. (1) is triv-

ial in the superconductor but needs some care in the fer-
romagnet. In the region 0 , x , w the solution f̂ can
be sought in the form f̂ � Û�x�f̂nÛ�x�, where Û�x� �
ŝ0 cos�Qx�2� 1 iŝ1 sin�Qx�2�. Substituting this expres-
sion into Eq. (1) and assuming that the solution depends
on the coordinate x only we obtain the following equation
for f̂n:

2iD≠2
xxf̂n 1 i�DQ2�2� � f̂n 1 ŝ1f̂nŝ1� 1

DQ�≠xf̂n, ŝ1� 1 2ef̂n 1 h�ŝ3, f̂n� � 0 . (3)

Here �. . .� is the anticommutator. In the region x . w, f̂n

satisfies Eq. (3) with Q � 0.
We see from Eq. (3) that the singlet component, com-
muting with ŝ3, and triplet component, anticommuting
with ŝ3, are mixed by the rotating exchange field h. In the
region x . w the triplet and the singlet components de-
couple and their amplitudes should be found by matching
the solutions at x � w. One should also use the boundary
condition, Eq. (2), and match the solutions in the ferro-
magnet and superconductor. It is clear that the singlet and
triplet components of the anomalous function f̂n inevitably
coexist in the ferromagnet. This fact is also known for the
case of magnetic superconductors with Q fi 0 [14]. In the
region x . w the singlet part decays sharply but the triplet
one survives over long distances. We are able to confirm
these statements solving Eq. (3) with the boundary condi-
tion Eq. (2). In the case of a homogeneous magnetization
(Q � 0) the triplet pairing cannot be induced, which fol-
lows immediately from Eq. (2) connecting separately the
singlet and triplet components at the opposite sides of the
interface and Eq. (3).

Equation (3) can be solved exactly. The solution f̂n can
be written in the form

f̂n � ŝ0A�x� 1 ŝ3B�x� 1 iŝ1C�x� . (4)

The function C�x� in Eq. (4) is the amplitude of the
triplet pairing, whereas the first and the second term de-
scribe the singlet one. Substituting Eq. (4) into Eq. (3) we
obtain a system of three equations for the functions A, B,
and C, which can be sought in the form

A�x� �
3X

i�1

�Ai exp�2kix� 1 Āi exp�kix�� . (5)

The functions B�x� and C�x� can be written in a similar
way. The eigenvalues ki obey the algebraic equations

�k2 2 k2
e 2 Q2�C 2 2�Qk�A � 0 ,

�k2 2 k2
e�B 2 k2

hA � 0 , (6)

�k2 2 k2
e 2 Q2�A 2 k2

hB 1 2�Qk�C � 0 ,

where k2
e � 22ie�D and k

2
h � 22ih�D (indices i were

dropped). The eigenvalues k are the values at which
the determinant of Eqs. (6) turns to zero. From the first
equation of Eqs. (6) we see that in the homogeneous case
(Q � 0) the triplet component has a characteristic pene-
tration length �k21

e , but we see from Eq. (2) that its am-
plitude is zero. If Q fi 0, the triplet component C is
coupled to the singlet component �A, B� induced in the
ferromagnet according to the boundary condition Eq. (2)
(proximity effect). If the width w is small, the triplet
component changes only a little in the region �0, w� and
spreads over a large distance of the order jk21

e j in the
region �0, L�. In the case of a strong exchange field h,
jh is very short (jh ø w, jT ), the singlet component de-
cays very fast over the length jh, and its slowly vary-
ing part turns out to be small. In this case the first two
eigenvalues k1,2 	 �1 6 i��jh can be used everywhere
in the ferromagnet �0 , x , L�, where L is the length
of the ferromagnet. As concerns the third eigenvalues,
we obtain k3 �

p
k2

e 1 Q2 in the interval �0, w�, and
4097
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k3 � ke in the interval �w, L�. The amplitude B3 of the
slowly varying part of the singlet component is equal to
B3 � 2�Qk3�k

2
h�C3 ø C3.

All the amplitudes should be chosen to satisfy the
boundary conditions at x � 0 [Eq. (2)] and zero boundary
condition at x � L. For the triplet component we obtain
[we restore the indices R(A)]

CR�A��x� � 7i�QB�0� sinh�ke�L 2 x��
3 �ke coshQe coshQ3

1 k3 sinhQe sinhQ3�21�R�A�, (7)

where w , x , L, BR�A��0� � �rjh�2Rb�fR�A�
S is the

amplitude of the singlet component at the S/F interface,
Qe � keL, Q3 � k3w, and kR�A�

e �
p

72ie�D. One
can see that the difference CR 2 CA is an even function
of e. This is a direct consequence of the fact that
CR 2 CA is proportional to the Fourier transform of the
correlator K�t� � 
c"�t�c"�0� 1 c"�0�c"�t��, which is
even in time. In the Matsubara representation, CR�A� in
Eq. (7) should be replaced by Cv with sgnv instead of
�7� and kv �

p
jvj�D, fS�v� � D�

p
v2 1 D2 instead

of kR�A�
e , f

R�A�
S , respectively. Thus, Cv corresponding to

the temperature correlator K�t� � 2
Ttc"�0�c"�t�� is
an odd function of v and the sum over all v is zero in
accordance with K�0� � K �0� � 0.

It is clear from Eq. (7), that the triplet component is
of the same order of magnitude as the singlet one at
the interface. Indeed, for the case w ø L we obtain
from Eq. (7) jC�0�j � B�0�� sinhaw , where aw � Qw is
the angle characterizing the rotation of the magnetization.
Therefore if the angle aw # 1 and the S/F interface trans-
parency is not too small, the singlet and triplet components
are not small. They are of the same order in the vicinity of
the S/F interface, but while the singlet component decays
abruptly over a short distance (�jh), the triplet one varies
smoothly along the ferromagnet, turning to zero at the F
reservoir. In Fig. 2 we plot the spatial dependence of the
singlet jB�x�j and the triplet jC�x�j components for two
different Q. One can see that the singlet component de-
cays abruptly undergoing the well-known oscillations [15]
while the triplet one decays to zero slowly. This decay in
the region �0, w� increases with increasing Q.

Thus, we come to a remarkable conclusion: the penetra-
tion of the superconducting condensate into a ferromagnet
may be similar to the penetration into a normal metal. The
only difference is that, instead of the singlet component in
the case of the normal metal, the triplet one penetrates into
the ferromagnet. Of course, in order to induce the triplet
component one needs an inhomogeneity of the exchange
field at the interface.

The presence of the condensate function (triplet compo-
nent) in the ferromagnet can lead to interesting long-range
effects. One of them is a change of the conductance of a
ferromagnetic wire in a S/F structure (see inset in Fig. 1)
when the temperature is lowered below Tc. This effect was
observed first in S/N structures and later was successfully
4098
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FIG. 2. Spatial dependence of the singlet (dashed line) and
triplet (solid line) components of jf̂j in the F wire for different
values of aw . Here w � L�5, e � ET , and h�ET � 400. ET �
D�L2 is the Thouless energy.

explained (see, e.g., reviews [5,6]). Now we consider the
S/F structure shown in the inset of Fig. 1. The normal-
ized conductance variation dG̃ � �G 2 Gn��Gn is given
by the expression [16]:

dG̃ � 2
1

32T
Tr

Z
de F0

V 
� f̂R�x� 2 f̂A�x��2� . (8)

Here Gn is the conductance in the normal state, F0
V �

1�2�cosh22����e 1 eV ��2T ��� 1 cosh22����e 2 eV ��2T ����, and

. . .� denotes the average over the length of the ferromag-
netic wire between the F reservoirs. The function f̂ is
given by the third term of Eq. (4) with CR � 2�CA��

(we neglect the small singlet component). Substituting
Eqs. (4) and (7) into Eq. (8) one can determine the
temperature dependence dG̃�T �. Figure 3 shows this
dependence. We see that dG̃ increases with decreasing
temperature and saturates at T � 0. This monotonic
behavior of dG̃ contrasts with the so called reentrant
behavior of dG̃ in S/N structures [17,18] and is a result
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FIG. 3. The dG�T� dependence. Here g � rjh�Rb .
D�ET ¿ 1 and w�L � 0.05.
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of broken time-reversal symmetry of the system under
consideration.

Available experimental data are still controversial. It
has been established in a recent experiment [3] that the
conductance of the ferromagnet does not change below Tc

and all changes in dG are due to changes of the S/F in-
terface resistance Rb . However, in other experiments Rb

was negligibly small [1]. The mechanism suggested in our
work may explain the long-range effects observed in the
experiments [1,2]. At the same time, the result of the ex-
periment [3] is not necessarily at odds with our findings.
The inhomogeneity of the magnetic moment at the inter-
face, which is the crucial ingredient of our theory, is not
a phenomenon under control in these experiments. One
can easily imagine that such inhomogeneity existed in the
structures studied in Refs. [1,2] but was absent in those of
Ref. [3]. The magnetic inhomogeneity near the interface
may have different origins. Anyway, a more careful study
of the possibility of a rotating magnetic moment should be
performed to clarify this question.

In order to explain the reentrant behavior of dG�T � ob-
served in Refs. [1,2] one should take into account other
mechanisms, as those analyzed in Refs. [4,7,19]. How-
ever, this question is beyond the scope of the present paper.

We note that at the energies e of the order of Thou-
less energy e � ET the triplet component spreads over the
full length L of the ferromagnetic wire (see Fig. 2). This
long-range effect differs completely from the proximity
effect in a ferromagnet with a uniform magnetization con-
sidered recently in Ref. [20]. In the latter case the char-
acteristic wave vector is equal to k1,2 �

p
22i�e 6 h��D

[cf. Eqs. (6)]. It was noted in Ref. [20] that if e ! 6h,
then k1,2 ! 0 and the singlet component penetrates in the
ferromagnet. If the characteristic energies ech � ET , T are
much less than h, the penetration length jk1,2j

21 is of the
order jh and is much shorter than jT or L.

It is also interesting to note that a triplet component of
the condensate function with the same symmetry (odd in
frequency v and even in momentum p) was suggested by
Berenziskii [21] as a possible phase in superfluid 3He (this
so-called “odd” superconductivity was discussed in a sub-
sequent paper [22]). Being symmetric in space, this com-
ponent is not affected by potential impurities, in contrast
to the case analyzed in Ref. [23], where the triplet compo-
nent of the condensate was odd in space. While in 3He this
hypothetical condensate function is not realized (in 3He it
is odd in p but not in frequency), in our system this odd
(in v) triplet component does exist, although under special
conditions described above.

In conclusion, we have shown that in the presence of
a local inhomogeneity of magnetization near the S/F in-
terface, both the singlet and triplet components of the con-
densate are created in the ferromagnet due to the proximity
effect. The singlet component penetrates into the ferro-
magnet over a short length jh, whereas the triplet com-
ponent can spread over the full mesoscopic length of the
ferromagnet. This long-range penetration of the triplet
component should lead to a significant variation of the fer-
romagnet conductance below Tc.
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