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Is the Quantum Dot at Large Bias a Weak-Coupling Problem?
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We examine the two-lead Kondo model for a dc-biased quantum dot in the Coulomb blockade regime.
From perturbative calculations of the magnetic susceptibility, we show that the problem retains its
strong-coupling nature, even at bias voltages larger than the equilibrium Kondo temperature. We give a
speculative discussion of the nature of the renormalization group flows and the strong-coupling state that
emerges at large voltage bias.
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For over a decade, transport measurements on quantum
dot systems have stimulated theoretical interest in the prop-
erties of the Anderson model out of equilibrium [1–3].
Early predictions [4–9] of the Kondo effect in such sys-
tems have recently been experimentally verified [10–13].
In the small voltage regime, such experiments have pro-
duced impressive agreement with theoretical predictions.
Recent interest [14–16] has turned to the question of how
the Kondo effect behaves far from equilibrium, i.e., at large
voltage bias.

In the Coulomb blockade regime, one may neglect
charge fluctuations of a quantum dot and concentrate
on transport processes that operate by flipping the dot’s
spin. In this limit, the physics is described by a two-lead
Kondo model [14,17] [Eq. (1)]. A key property of the
Kondo model in equilibrium is the presence of a “run-
ning coupling constant,” whereby the antiferromagnetic
coupling between the dot spin and the leads grows as the
energy scale is reduced. This leads to a “strong coupling”
low-energy regime where the spin of the dot is quenched
by the lead electrons and the residual properties can no
longer be obtained from a perturbative expansion. A
single scale, the “Kondo temperature” TK , governs the
low temperature properties; TK � D

p
g e21�2g, where g

is the “bare coupling” between the spin of the dot and the
leads and D ¿ TK is the electron bandwidth. Thus the
magnetization at temperature T and magnetic field B is a
universal function M � m�T�TK , B�TK �, where M has a
perturbative “weak coupling” expansion in g only when
T , B ¿ TK . [See Fig. 1(a).]

In a quantum dot, the formation of an Abrikosov-Suhl
resonance in the quasiparticle density of states which ac-
companies the Kondo effect substantially enhances the
linear conductivity at low temperature, resulting in unitary
transmission at absolute zero [4,5].

But what happens to the physics of the quantum dot
at voltages V comparable to or larger than the Kondo
temperature? In particular, does a large voltage act as a
large magnetic field or temperature, and return the dot to
a weak coupling regime where its spin is unquenched?
Theoretical studies of the differential conductivity
G�V � do suggest that the large voltage physics is gov-
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erned by weak-coupling perturbation theory, for [14]
G � �2e2�h�F�eV�TK � has a perturbative expansion in g
for V ¿ TK . However, the large bias conductivity probes
electrons that are far from the Fermi surface and does
not in itself shed light on the coupling between the local
moment and the electrons near the Fermi surface.

In this Letter, we argue that the quantum dot retains
its strong-coupling character even at voltages V ¿ TK .
We use explicit perturbative calculations of the magnetic
susceptibility to show that the large bias quantum dot is
characterized by a strong-coupling regime with a voltage-
dependent Kondo temperature T�

K ~ T2
K�eV .

The Hamiltonian of the two-lead Kondo model is

H �
X

aks

´akc
y
akscaks 1 Hrefl 1 Htrans , (1)

Hrefl � JR

X
k,k0,s,s0

�cy
Rks �sss0cRk0s0� ? �S 1 �R ! L� ,

Htrans � JLR

X
k,k0,s,s0

�cy
Rks �sss0c0

Lks0� ? �S 1 �R $ L� .

Here, c
y
aks creates an electron in lead a [ �L, R� with

momentum k and spin s, and JL, JR , and JLR � JRL

are positive (antiferromagnetic) Kondo coupling constants
between the electrons and the dot ( �S).
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FIG. 1. (a) Field dependence of the crossover temperature
T �

K �B� separating weak- and strong-coupling regimes of the
equilibrium Kondo model. At absolute zero, for fields larger
than the Kondo temperature the quantum dot reenters weak
coupling. (b) Voltage dependence of the crossover temperature
T�

K �V �, from our results. Note that T�
K goes to zero only in

the limit V ! `, i.e., for low enough temperatures, the model
reaches a strong coupling state for all V .
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The first part of H describes the electrons in the leads,
with energies ´ak � ´k 2 eVa , where Va � 6V�2 are
the potentials of the left- and right-hand leads. Hrefl de-
scribes regular Kondo processes, where an electron from
a given lead is spin-flip scattered back into the same lead;
Htrans describes “spin-flip cotunnelling,” where an elec-
tron from one lead is spin-flip scattered into the other lead.
We introduce the dimensionless couplings J̄L, J̄R , J̄LR , de-
fined by J̄i � rJi , where r is the density of states at the
Fermi levels. When the model is derived from an Ander-
son model via a Schrieffer-Wolff transformation [18,19],
the coupling constants obey jJLR j

2 � JLJR , restricting the
scattering to a single channel. Symmetric dots (JL �
JR � JLR), are of particular interest, for in this case the
differential conductivity G approaches the unitary limit
(2e2�h) at low temperatures.

In a magnetic field we replace H ! H 2 BMz , where
Mz � 2Sz 1

P
aks snaks is the magnetization. The

impurity susceptibility is xi �
≠

≠BMzjB�0 2 xo , where
xo � 4r is the Pauli susceptibility of the leads. We
expand xi perturbatively to order J2 using the Keldysh
method [20], and representing the spin as �S � 2

i
2 �h 3 �h,

where the elements of �h are Majorana fermions. In the
large-bandwidth limit we find that

xi �
1
T

Ω
1 2

1
2

�J̄R 1 J̄L� 2 �J̄2
L 1 J̄2

R� ln

µ
D

2pTe11g

∂

2 2jJ̄LRj
2

∑
ln

µ
D

2pTe11g

∂
2 f

µ
V
T

∂∏æ
, (2)

where g � 0.577 . . . is the Euler constant. The crossover
function f�x�, in terms of digamma functions c�z�, is

f�x� � Re
Z `

2`

dy
4 cosh2� y

2 �
�c̃� y 1 x� 2 c̃� y�� , (3)

where c̃�x� � c� 1
2 1 i

x
2p �.

The second-order terms in (2) describe the leading loga-
rithmic enhancement of the Kondo coupling. Terms of or-
der J2

LR involve interlead processes and, as expected, the
logarithmic divergence in these terms is cut by the volt-
age. [To see this, note that 2f�V�T � 	 2 ln�V�T � for
V ¿ T which cancels the logarithmic temperature diver-
gence.] By contrast, the intralead terms of order J2

R and J2
L

are completely unaffected by the voltage V , which guar-
antees that the leading logarithmic divergence survives at
arbitrarily high voltage. This is easily seen in the large-V
form of the susceptibility,

xi �
1
T

Ω
1 2

1
2

�J̄R 1 J̄L� 2 �J̄2
L 1 J̄2

R� ln

µ
D

2pTe11g

∂

2 2jJ̄LRj
2 ln

µ
D
V

∂æ
, V ¿ T . (4)

The survival of these leading logarithms is a signature that
the intralead Kondo effect continues unabated at tempera-
tures smaller than the voltage.
Let us now be more precise by defining a generalized
crossover temperature T�

K as the temperature below which
the perturbation expansion (2) breaks down, i.e., the tem-
perature at which the O�J� and O�J2� terms become equal
in magnitude. This procedure yields an implicit formula
for T�

K �V �:

T�
K �V � � TKe2�1�2�f�V�T �

K �V ��, (5)

where TK � De21�2g is the leading approximation to the
Kondo temperature [21]. We plot T�

K �V � in Fig. 1(b).
Note that T�

K goes to zero only when V goes to infinity.
From the behavior of f at large argument, we can extract
the large voltage behavior

T�
K �

�TK �2

V
. (6)

This means that the model always enters a strong coupling
regime at low temperature, even for V ¿ TK .

These perturbative results for xi may be interpreted
within a simple renormalization picture. Let us stress,
however, that there is not yet a general theory of renor-
malization out of equilibrium (though see [22]). In
particular, it has not been established that there exists an
appropriate family of effective Hamiltonians through
which one passes as the high-energy cutoff scale is varied.
Furthermore, in the presence of a voltage, long-time
processes cannot be unambiguously connected with
low-energy ones. Hence the following discussion is
somewhat speculative, and steps beyond the perturbative
calculation that led to (5).

In the spirit of a “poor man’s scaling” approach [23],
we consider varying a cutoff energy scale L in the prob-
lem, and studying the variation of the effective coupling
constants JL, JR , JLR as functions of this variable. The es-
sential scaling behavior, as usual, can be read off from the
perturbative expression (2). We may identify two scaling
regimes:

(1) One-channel scaling, L ¿ V . In this regime the ef-
fect of the voltage is not felt in any channel, so the dot be-
haves as an equilibrium single-channel Kondo model. The
single coupling constant g � J̄L 1 J̄R rescales accord-
ing to

dg
d lnL

� 22g2 1 O�g3� , (7)

so to leading order in the scaling, the coupling constant
at scale L � V is given by 1

g� �
1
g 2 2 ln�D�V �. In this

regime, the ratio JLR�g is preserved.
(2) Two-channel regime V ¿ L ¿ T�

K �V �. Around
L 	 V the logarithmic renormalization of interlead pro-
cesses comes to a halt, freezing JLR at its value JLR�V �
and prompting a crossover to a two-channel scaling regime
in which intralead processes independently renormalize JR

and JL. This scenario is reminiscent of one proposed by
Wen [24]: that the effect of the voltage is to destroy coher-
ence between the two leads, suppressing the JLR terms, and
4089
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leaving a two-channel Kondo Hamiltonian. We shall re-
strict our attention to symmetric dots, so that JL,R � J̄�L�
scale together according to

dJ̄
d lnL

� 22J̄2 1 O�J̄3� . (8)

At voltage V , J̄R,L � g��2, so to leading order, the cou-
pling constants are given by

1
J̄�L�

�
2
g�

2 2 ln�V�L� . (9)

Scaling continues until these coupling constants become
of order unity. Setting the left-hand side of (9) to one, we
recover the same crossover scale obtained by comparing
terms in the susceptibility: T�

K 	 Ve21�g�

� �TK �2�V .
These flows are depicted in Fig. 2.
Thus we conclude that, for V . TK , the scaling is of

a two-channel character by the time strong coupling is
reached. This suggests that an appropriate low-temperature
description may be in terms of the infrared fixed point of
the two-channel Kondo model. However, it is known that
this point is unstable to perturbations of the form JLR , so
how can this be? We shall show that the presence of a fi-
nite voltage renders the JLR perturbations irrelevant, mak-
ing the two-channel infrared fixed point a likely candidate
for the V . TK state of the model.

To demonstrate this, let us suppose that H0 is the Ham-
iltonian where JLR � 0, and consider the effects of in-
troducing a small left-right coupling l. For convenience,
let us perform a gauge transformation on the lead-electron
operators, caks ! eiVa tcaks . This removes the chemi-
cal potentials from the bare energies of the lead electrons,
with the compensating effect of introducing a factor e6iVt

into the JLR terms. Therefore, the perturbation we wish to
consider is given by HI �t� � l�Oye2iVt 1 OeiVt�, where
O � c

y
L �scR ? �S.

Jρ
1

TKT * V Λln

1

ln lnln

J J,

JLR

LR

FIG. 2. Schematic renormalization flows for this model, for
the case V . TK . T . All couplings flow together down to
scales of order V , after which the flow of JLR is halted at its
value JLR�V �. The couplings JL and JR continue to flow to
strong coupling values, but more slowly, yielding a generalized
crossover temperature T�

K �V � 	 T 2
K�V .
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From the conformal field theory of the two-channel
Kondo model [25], we know the scaling dimension of
the interchannel operator, which scales according to

O�t�Oy�0�� 	 1

t at long times. Any perturbation cou-
pling statically to O is relevant, but we are interested in a
coupling to the oscillatory operator OeiVt . If we calculate
the expectation value of HI , we obtain


HI � � 2l2 Im
Z `

0
dt 
�O�t�, Oy�0���e2iVt 	 ln

µ
L̃

V

∂
,

(10)

showing that the perturbation is finite in a nonzero voltage,
but becomes relevant, as expected, in the V � 0 case. This
suggests that the finite voltage protects the two-channel
fixed point against the damaging effects of interlead cou-
pling. We expect that these arguments can be examined
in more detail using a bosonized formulation of the two-
channel Kondo model [16].

We may go one small step beyond this point, and ex-
amine briefly the nature of the current fluctuations in the
leads at this fixed point. The current operator is given
by I�t� � 2i�e�h̄�l�Oye2iVt 2 H.c.�. From the scaling
dimension of the operators O and Oy we can see that the
current-current correlator decays as e2iVt�t, so that we ex-
pect that for small l

C�v� � 
�I�v�, I�2v��� 	 ln�jvj 2 V � , (11)

i.e., C�v� will develop a weak logarithmic divergence at
frequencies v 	 eV�h̄. A similar divergence (resulting
from the corresponding 1�t decay of the spin correlators)
is responsible for the logarithmic divergence of the spin
susceptibility in a two-channel Kondo model.

This discussion leads us to propose the crossover dia-
gram presented in Fig. 3.

FIG. 3. Schematic crossover diagram for the two-lead Kondo
model. The dashed line separates the regions V , T and
V . T corresponding to one- and two-channel scaling be-
havior, respectively. The solid line represents the crossover
from the weak- to the strong-coupling region, estimated from
perturbative calculations.
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If indeed T�
K is the only scale in the problem, the sus-

ceptibility and frequency-dependent conductivity in this
system are expected to display the following logarithmic
forms at low temperature:

G�v� 	
e2

h̄
ln

∑
T�

K

max�jv 2 eV j, T �

∏
, v � eV

(12)

x�T , V � 	
1

T�
K

ln

∑
T�

K

T

∏
. (13)

If these tentative forms hold true, then the spin susceptibil-
ity must go from a finite value at low voltages to a diver-
gent form at high voltages, suggesting the possibility of a
quantum critical point separating the low and high voltage
regimes of the quantum dot.

We end by adding a brief remark on the issue of decoher-
ence. A common view is that large voltages decohere the
spin fluctuations of the quantum dot, introducing a deco-
herence time given by t21 � �rJ�2V . [See, for example,
Eq. (43) of [8] and p. 387 of [19].] If this decoherence is
to destroy the Kondo effect, it must cut the logarithms in
expressions such as (2) before strong coupling is achieved.
But in order for terms of the type ln�D� max�t21, T �� to
appear in the high-temperature expansion, the perturbation
theory would have to break down at a temperature larger
than T�

K , for which there is no evidence in the low-order
perturbation theory. Unless such a breakdown occurs at
higher orders, we conclude that t21 , T�

K .
To conclude, we have presented perturbative arguments

which suggest that the two-lead Kondo model, representing
a quantum dot deep in the Coulomb blockade regime, re-
tains its strong-coupling nature even for voltages V . TK .
To reach this conclusion, we have used a perturbative
calculation of the magnetic susceptibility to read off the
leading renormalization behavior. We concluded that JLR

ceases to renormalize at scales of order V , while JL and
JR continue to renormalize, though more slowly, towards
strong coupling. This suggests a picture in which the
model scales to a two-channel infrared fixed point. To
test this picture, we performed a partial analysis of the
stability of this point with respect to small perturbations
of the form JLR . At finite voltages, the point was found
to be stable to such perturbations, although the role of
dangerous irrelevant operators may warrant further inspec-
tion. The voltage dependence of T�

K , and the associated
crossover to two-channel Kondo behavior, imply that the
voltage, rather than simply providing a frequency shift,
qualitatively changes the structure of the model’s excita-
tion spectrum.
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