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Anomalous Viscoelastic Response of Nematic Elastomers
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We report a combined theoretical and experimental study of linear viscoelastic response in oriented
monodomain nematic elastomers. The model predicts a dramatic decrease in the dynamic modulus in
certain deformation geometries in an elastic medium with an independently mobile internal degree of
freedom, the nematic director with its own relaxation dynamics. Dynamic mechanical measurements on
monodomain nematic elastomers confirm our predictions of dependence on shear geometry and on ne-
matic order, and also show a very substantial mechanical loss clearly associated with director relaxation.
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The equilibrium mechanical response of liquid crys-
talline elastomers can be soft or hard depending on the
relation between the imposed strains and the nematic di-
rector. With such unusual equilibrium elasticity one might
expect dynamical response to be equally nontrivial. If the
elastic forces are small, then the return to equilibrium could
be driven more weakly than in conventional systems. How
does internal director rotation, and the corresponding soft-
ening of rubber-elastic response, determine the dynamic
mechanical response of a nematic rubber to a small ampli-
tude oscillatory shear?

Equilibrium elastic properties of monodomain nematic
rubbers are well studied, both theoretically and experimen-
tally. The small-deformation limit of elastic energy takes
the form (cf. recent review [1])

F � C1�n ? ˜́ ? n�2 1 2C2 Tr�´� �n ? ˜́ ? n� 1 C3�Tr�´��2

1 2C4�n 3 ˜́ 3 n�2 1 4C5��n 3 ˜́ ? n��2

1
1
2D1�n 3 �V2v��2 1 D2n ? ˜́ ? �n 3 �V2v�� .

(1)
where n is the undistorted nematic director. ˜́ ik is the
traceless part of linear symmetric strain tensor, ´ik 2
1
3 Tr�´�dik with ´ik � 1

2 �≠kui 1 ≠iuk�, cf. [2]. In a
system with an internal orientational degree of freedom n,
the antisymmetric part of the strain, expressed by the local
rotation vector V � 1

2 curlu, also contributes to the physi-
cal properties when it deviates from the director rotation
vector v � �n 3 dn�. It is this relative rotation [3] that
causes a number of unique effects in nematic elastomers.

In a rubber or dense polymer melt, the bulk modu-
lus C3 is comparable to liquid values, C3 � 1010 Pa and
is much larger than penalties for shear. We, therefore,
shall consider only deformations with no bulk compres-
sion: Tr�´� � 0. In general, all other constants in the
elastic energy density Eq. (1) are of the same order of
magnitude, similar to the isotropic rubber modulus m �
cxkBT � 105 Pa, with cx the effective crosslinking den-
sity. A molecular model of an ideal nematic elastomer,
that is, with simplest Gaussian and nematic effects, cf. [1],
gives specific values for these constants:
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in which case the condition for ideal soft elasticity holds,
CR

5 � C5 2
1
8D2

2�D1 � 0 [4]: shears governed by C5 and
with complete director relaxation cost no energy. The
measure of renormalized shear modulus CR

5 fi 0 is the
characteristic parameter of semisoftness, or nonideality of
nematic networks, essentially, the deviation from Eqs. (2).
Model expressions for elastic constants depend, apart from
the universal rubber-elastic energy scale m, on a single
parameter r . In an ideal nematic network r � �k���,
the ratio of principal step lengths of the anisotropic back-
bone [or r � �Rk�R��2 for the principal gyration radii].
In more complex, nonideal elastomers this parameter may
be less clearly defined. Nevertheless, it has to be a func-
tion of nematic order parameter Q�T �, satisfying a linear
limit r � 1 1 aQ at small Q. In the isotropic phase, at
Q � 0 and r � 1, the elastic constants become, as ex-
pected: C1 � 2C4 � 2C5 � m, D1 � D2 � 0 and the
elastic energy (1) reduces to a classical Lamé expression.

In an incompressible material, all deformations are es-
sentially shears. We shall examine two relevant simple
shear geometries, D and V , as shown in Fig. 1. These
are the geometries that one achieves in a typical dynamic-
mechanical experiment since in all known cases the di-
rector is confined to the sample plane. The geometry of
uniaxial extension, more commonly found in studies of

FIG. 1. The geometry of simple shear experiment: Small
strains ´xz � 1

2 ´eivt are applied with three principal orienta-
tions of the nematic director n, labeled G (for n along the shear
gradient), D (displacement), and V (vorticity). The director
changes by jdnj � u.
© 2001 The American Physical Society
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equilibrium stress-strain, is less appropriate for an oscil-
lating regime because of possible slow relaxation [5] and
incomplete sample recovery. The simple oscillating shear
´�t�, externally applied to the sample, is the single xz com-
ponent of the full Cauchy strain, the same for each director
orientation in Fig. 1. It also automatically satisfies the nec-
essary incompressibility constraint.

The issue of possible director gradients and correspond-
ing Frank elasticity in nematic elastomers has been dis-
cussed in the literature [1,6]. It is known that, unless
there are special reasons for a director singularity (such
as in disclinations or narrow domain walls), the Frank
elastic effects play a minor role in the free energy bal-
ance and can be neglected. Perhaps this approximation
needs to be reconsidered if a sheared sample is very thin
in the z direction. However, in a practical situation with
a sample thickness d � 100 mm and more, ignoring the
effect of nematic director gradients is a reasonable first
approximation.

The elastic free energy density, Eq. (1), takes the form,
in the cases D and V of Fig. 1:

FD � �C5 1
1
8 �D1 1 2D2��´2

2
1
2 �D1 1 D2�´u 1

1
2D1u2, (3)

FV � C4´2,

where the small change in director orientation dn is taken
equal to the angle u. Clearly, one does not expect director
rotation to occur in the “log-rolling” geometry V .

Signs of unusual elastic response arise immediately. If
the director is allowed to rotate, u adopts its optimal value,
minimizing F for a given deformation ´. Returning the
resulting u�´� to Eqs. (3), the free energy at a given strain
is also optimal:

uD �
D1 1 D2

2D1
´, FD !

µ
C5 2

D2
2

8D1

∂
´2. (4)

Notice that if the nematic elastomer is ideal, then the free
energy in the geometry D (and G, for that matter) vanish
(C5 2 D2

2�8D1 � 0) because the director can internally
relax. Case V remains elastically hard. In fact, because of
the chosen restricted strain geometry, the response of even
ideal elastomers is actually quartic, rather than completely
soft (true softness requires some unconstrained extension
as well as shear [4]). Molecular models [1,7] yield the
quartic penalty F � 1

2m
r2

�r21�2 ´4, which we neglect in the
present linear-response analysis.

The generalized force driving the director rotation u�t�
is a torque, ≠F�≠u. In F one implicitly finds the shear
´�t�, with its externally imposed time variation, which of
course is the ultimate driving agent. The flatness of the
free energy F�´� will give the resulting dynamical response
its particular character in the geometries where director
rotation is possible [8].

Simplified single-viscosity model.— In order to study the
dynamics of mechanical response, one needs to model vis-
coelastic properties, essentially, the viscous dissipation.
This, added to the equilibrium elastic free energy, would
allow a description of the relaxation. As in the continuum
theory of liquid crystals, much progress can be made phe-
nomenologically, using the symmetries of variables con-
tributing to the physical effects. In a subsequent longer
paper, we present such a symmetry-based version of linear
dissipation function for nematic elastomers — it turns out
that a full analogy with the Leslie-Ericksen formalism [9]
can be established.

A downside of such a full description is the necessar-
ily large number (five) of independent viscous coefficients
that enter the model. In this Letter, we present a much
simplified version of the viscoelastic model, which ignores
the viscous anisotropy and considers only a single rota-
tional viscosity dissipation. Although approximate, this
simple model highlights the principal physical mechanism
behind the effect of shear softening on the dynamic rubber
moduli.

An elastic torque acting on nematic director n in the
deformation geometries G and D is resisted by a linear
viscous torque g�≠u�≠t� with g an appropriate rotational
viscosity. The dynamical equation describing the evolution
of the director approaching its equilibrium is, then, a bal-
ance of torques g �u � 2≠F�≠u. From Eqs. (3) we have
for the case D:

g �u � 2D1u 1
1
2 �D1 1 D2�´�t� . (5)

This linear inhomogeneous differential equation is
easily solved. After the relaxation of the transient
u � u0e2�D1�g�t associated with starting the strain oscil-
lations, the steady-state response is given by the particular
solution with ´ � eivt:

uD�t� �
�D1 1 D2�

2g

Z t

2`
e2�D1�g� �t2t0�´�t0� dt0. (6)

The characteristic time for relaxation is t � g�D1. At
frequencies much lower than the Rouse scale one can
neglect specific polymer/rubber viscoelastic contributions
and concentrate only on the (much slower) director re-
laxation modes. The linear-response stress function s �
≠F�≠´ at a given frequency of imposed strain becomes

sD � 2�C5 1
1
8 �D1 1 2D2��´�v�

2
1
2 �D1 1 D2�u�v� , (7)

sV � 2C4´�v� .

In the D geometry, where director rotation is possible, the
dynamic modulus is modified by the internal director re-
laxation. Substituting the Fourier transform of Eq. (6) into
(7), we obtain the stress in the form s�v� � G�v�´�v�,
that is,

sD �

µ
2C5 1

1
4 �D1 1 2D2� 2

�D1 1 D2�2

4�D1 2 igv�

∂
´�v� .

(8)
The corresponding storage and loss moduli are given by the
real and imaginary parts of the effective complex modulus
4045
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G�v� in Eq. (8), which have a characteristic single-
relaxation time behavior:

G0 �
2�C5 2 D2

2�8D1� 1 �2C5 1
1
4 �D1 1 2D2�� �vto�2

1 1 �vt�2 ,

G00 � 2
�D1 1 D2�2

4D1

vt

1 1 �vt�2 .

(9)

Equations (5)–(9) ignore all classical aspects of polymer
chain relaxation in rubbers and look only at the additional
effect of coupling to the independently rotating director.
The effective response modulus in the “log-rolling” geom-
etry V is unchanged by director rotation GV �v� � 2C4.
We shall assume the classical frequency dependence is the
same in the Di and Ci and, thus, that it is revealed by
GV �v�. Normalizing G0

D by G0
V would then isolate the

dynamics associated with the director.
At zero frequency strain the storage moduli G0

0 is equal
to 2CR

5 	 2�C5 2 D2
2�8D1�. In the isotropic phase (at

r � 1) the ideal G0 value would be 2C5 � m � 2C4;
cf. Fig. 2(a). The high-frequency response increases to
G0 ! 2C5 1

1
4 �D1 1 2D2�. The D2 term has a tendency

to repel the director from the principal extension diagonal
of shear, imposed in the geometry D, the effect being re-
versed when one interchanges prolate and oblate backbone
chain anisotropy (r . 1 and r , 1, the sign of D2 revers-
ing on this exchange). This explains the 6 signs above
being associated with D2. The variation of r with tem-
perature is the underlying origin of the change in elastic
response. Theoretically, the nematic-isotropic transition
must be weakly first order. Significant pretransitional ef-
fects and the influence of quenched disorder are expected,
and one needs to determine r and the nematic order pa-
rameter Q�T � experimentally. Figure 2(b) shows such a
dependence in our elastomer.

Experimental measurements.—Full details of the
sample preparation and experimental protocol will be
given in a later paper, where we shall also illustrate the
universality of the observed effect by studying a set of

FIG. 2. (a) Theoretical plot of storage modulus, G0
D (in units

of m), for the given Q�T� data and frequencies, vt � 0.1,
0.5, 2, and 20 (increasing curves). The modulus approaches
the semisoft constant G0

0 at zero frequency. (b) Experimentally
measured effective anisotropy, r�T� (diamonds), and nematic
order parameter, Q�T � (bullets). The behavior near Tni closely
follows the relation r � 1 1 4.5Q.
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widely differing materials. Monodomain nematics of
side-chain siloxane liquid crystalline elastomers with
mesogenic vinyl-terminated benzoic methyl esters and
divinyl alkyl quinone crosslinkers (5% density) were pre-
pared following the procedure of Finkelmann et al. [10] of
crosslinking under uniaxial aligning stress. The orienta-
tional order parameter Q�T �, measured by x-ray scattering,
and the model parameter r�T �, independently measured
from thermal expansion [11], are shown in Fig. 2(b). The
glass transition and clearing transition temperatures were
determined by DSC to be approximately 0 and 90 ±C,
respectively. Dynamic mechanical measurements were
made on a TA Instruments DMTA at DERA, Farnbor-
ough, in single-shear mode. The sample dimensions were
7 3 7 3 0.4 mm. The amplitude of the applied defor-
mation was 10 mm, that is at a strain of 2.5% what we
checked was well in the linear regime. Data were collected
over the frequency range 0.1 to 100 Hz in displacement
(D) and vorticity (V) geometries, using exactly the same
sample placed in the shear field in different orientations.

Figure 3(a) presents the temperature dependence of the
dynamic storage modulus when the director was oriented
in the displacement and vorticity directions at frequen-
cies of 0.5, 5, and 50 Hz. In the log-rolling, V case
(solid lines, with data symbols suppressed), the modulus
shows an expected simple fall with rising temperature, due
the high-temperature tail of the glass transition, with no
other features. In contrast, when the director is in the dis-
placement D direction, there is a pronounced reduction in
modulus relative to that in the vorticity direction. This be-
havior is in excellent agreement with the predictions of the
model discussed above. The remarkable dip disappears at
Tni, for all frequencies, when the moduli in the two ge-
ometries become nearly equivalent (2C4 and 2C5, respec-
tively). Taking the ratio, G0

D�G0
V for the two geometries,

reduces the dependence on the underlying rubber dynam-
ics (contained in m) and focuses on the effects of director
relaxation. Plotting this ratio for a range of frequencies,
Fig. 3(b), we find a remarkable superposition of the critical

FIG. 3. (a) Temperature variation of storage modulus G0
D , at

frequencies of 0.5, 5, and 50 Hz (increasing pairs of curves).
Each pair of curves shows the data for D geometry by symbols
and the corresponding V data by solid lines. (b) The ratio of
moduli in the two geometries at various frequencies, 0.1, 0.5, 1,
5, 10, 50, and 100 Hz (increasing curves, shown by solid lines
with data symbols suppressed for clarity). The ratio approaches
unity in the isotropic phase, but shows a pronounced universal
drop in the critical region below Tni.
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FIG. 4. (a) Frequency variation of storage moduli ratio, taken
at different temperatures below Tni: 76, 78, 80, 82, 84, and
86 ±C (increasing curves). (b) The phase angle (loss factor) tand,
at several frequencies: 0.5, 5, and 50 Hz (increasing curves),
showing the dramatic increase in mechanical loss in the whole
range of the nematic phase.

behavior near Tni (the remaining rise at lower temperatures
is due to the incomplete cancellation of glass-transition
effects).

Figure 4(a) presents the frequency dependence of
the storage moduli ratio G0

D�G0
V . The main change in

the reduced modulus occurs over the region 10–50 Hz.
The characteristic frequency v0, theoretically calculated
as 1�t � D1�g, could be a function of temperature
through its dependence on nematic order parameter. This
dependence for the coupling constant D1 is explicit in
the molecular model, but also on symmetry grounds
the proportionality D1 ~ Q2 is expected. Usually the
rotational viscosity g is also ~Q2 [9,12]. Without ex-
tending the frequency range to significantly higher values,
we could not unambiguously discern the temperature
dependence from Fig. 4(a); we can conclude only that the
characteristic frequency v0 remains constant or increases
with temperature increasing towards Tni.

We can now estimate the characteristic values. Because
of the uncertainty arising from only a limited experimen-
tally accessible frequency range and the tail of the glass
transition, we view the value of v0 � 10 Hz, used here
as only an estimate. Far from the nematic-isotropic tran-
sition temperature Tni we can take r � 3, Fig. 2(b). The
coupling constant D1 is, then, �4m � 20 kPa, Fig. 3(a).
Everything depends on the rotational viscous coefficient
g, which takes different values in different environments:
small molecules, polymers, and elastomers. Taking a
typical value in ordinary nematic liquid crystals g �
0.1 Pa ? s [9], we would obtain a rather short time scale
t � 1026 s. The rotational viscosity of the same side-
chain nematic polymer was measured in [13], confirming
that the director mobility is altered by long polymer
backbones, reaching g � 10 Pa ? s at low temperatures.
Our result for characteristic frequency v0 means that the
effective viscosity for the crosslinked elastomer has to be
much higher, g $ 103 Pa ? s. Such a dramatic increase
is evidence of the further retarding effect of cross linking
chains into the rubbery network.

In Fig. 4(b) one also finds the temperature dependence
of the loss factor, the phase angle tand � G00�G0 at fre-
quencies of 0.5, 5, and 50 Hz. It is clear from this plot
that the values of tand are extremely large over an ex-
tensive temperature window between the glass transition
and the nematic clearing temperature. This highlights the
large mechanical loss that arises from the internal direc-
tor rotation. Since this very high mechanical loss is pro-
nounced at all frequencies and is a sensitive function of
temperature, one envisages great potential in acoustic and
damping applications of nematic elastomers. We note that
earlier studies of polydomain [14] and monodomain [15]
elastomers found no nematic effects and instead concen-
trated on smectic phases.

To summarize, we have predicted a qualitatively new dy-
namic mechanical softening of nematic elastomers, which
is due to the internal director relaxation. We studied the ef-
fect experimentally and confirmed the predicted universal
decrease in the storage modulus. The mechanical relax-
ation of nematic elastomers is dramatically different from
that in ordinary polymers and rubbers.
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