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Finite-Mode Spectral Model of Homogeneous and Isotropic Navier-Stokes Turbulence:
A Rapidly Depleted Energy Cascade
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An eddy-viscous term is added to Navier-Stokes dynamics at wave numbers k greater than the in-
flection point kc of the energy flux F���log�k����. The eddy viscosity is fixed so that the energy spectrum
satisfies E�k� � E�kc� �k�kc�23 for k . kc. This resulting forcing induces a rapid depletion of the en-
ergy cascade at k . kc. It is observed numerically that the model reproduces turbulence energetics at
k # kc and statistics of two-point velocity correlations at scales r . l (Taylor microscale). Compared
to a direct numerical simulation of Rl � 130 an equivalent run with the present model results in a gain
of a factor 20 in CPU time.
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In the limit of large Reynolds numbers, Navier-Stokes
(NS) turbulence exhibits an infinite number of excited
modes (scales of motions), each subject to nontrivial phase
mixing induced by the quadratic nonlinearities inherent to
hydrodynamics. A key issue lies in the reduction of the dy-
namics to a closed set of equations for a finite number of
modes. The low wave-number modes, or large-scale mo-
tions, are particularly important since they contain most
information about the energetics.
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We present a reduced set of dynamical equations gov-
erning the energy-containing modes of homogeneous and
isotropic turbulence.

As a paradigm for homogeneous and isotropic tur-
bulence we consider the incompressible NS equations
in a cyclic box of side length 2p [1]. The velocity
field may be expanded as a Fourier series y�x, t� �P

k y�k, t� exp�ik ? x�, so that the NS equations in Fourier
space read
∑
≠

≠t
1 nmolk

2

∏
ya�k, t� � 2ikg

µ
dab 2

kakb

k2

∂ X
p1q�k

yb�p, t�yg�q, t� 1 fa�k, t� . (1)
Summation over repeated Greek indices is implied. In (1),
nmol is the molecular kinematic viscosity, while fa�k, t� is
an isotropic force acting at very low k.

Under isotropic conditions the wave-number–by–
wave-number instantaneous spectral energy budget is

∑
≠

≠t
1 2nmolk

2

∏
E�k, t� � T �k, t� 1 einj�k, t� .

E�k, t� denotes the energy in the shell of wave vectors
k # jkj , k 1 1, T �k, t� is the energy-transfer spectrum
comprising all triad interactions involving wave-number k
modes, and einj�k, t� represents the rate of energy supplied
by the large-scale force f�k, t�.

A finite-mode spectral model deals with a truncated ex-
pansion of the velocity field, such that y�k, t� � 0 for
jkj . K (spectral cutoff). At very large wave numbers,
turbulent excitations are suppressed by viscous dissipation.
Consequently, if K is chosen larger than the characteristic
dissipative wave number Kdiss the missing triad interac-
tions in the NS system reduced to resolved modes may
be neglected. The integration in time of this reduced sys-
tem is known as a direct numerical simulation (DNS) of
(1). Dimensional arguments suggest that Kdiss � R

3�2
l [2],
©

where Rl is the Taylor microscale Reynolds number. Be-
cause physical space is three dimensional, the number of
retained modes scales as R

9�2
l and thus precludes the in-

vestigation of high-Rl turbulent flows by DNS. In what
follows we focus on case K ø Kdiss so as to achieve a
substantial reduction of the NS system. A model account-
ing for missing triad interactions is then required.

Classical phenomenology pictures the kinetic-energy
transfer mechanism of turbulence as an energy cascade
from low to high wave-number modes [1]. The cascade
may be characterized by the flux F�k, t� of energy across
wave number k in terms of which the local stationary
energy budget may be written as

2nmolk
3E�k� � 2dF�d logk . (2)

When time dependence is omitted ensemble averaging is
assumed. A peculiar feature of F�k� as a function of log�k�
lies in the observation of an inflection point at wave number
kc, i.e., �d2F�k��d logk2�k�kc � 0 [see Fig. 1]. In order
to capture the physical meaning of kc let us introduce the
characteristic eddy-turnover time teddy�k�, or inverse rate of
energy transfer. Following Kolmogorov phenomenology
[2] it may be estimated as
2001 The American Physical Society 4033
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FIG. 1. F�k� denotes the mean energy flux across k. As a
function of log�k� the flux exhibits an inflection point at k �
kc. For k , kc the energy cascade accelerates with k, whereas
for k . kc the cascade decelerates under predominant viscous
effects.

teddy�k� � E�k�21�2k23�2. (3)

From (2) and (3) it is now seen that teddy�k� decreases,
i.e., the energy transfer accelerates, with k ø kc; Kol-
mogorov’s spectrum E�k� � k25�3 [2] yields teddy�k� �
k22�3. As k increases, viscous effects intensify and the
cascade acceleration progressively vanishes. For k & kc

the energy flows at a constant speed and E�k� � k23 lo-
cally. Finally for k . kc the cascade is decelerated and the
energy flux slowly vanishes. Based on these observations
we propose a finite-mode model obtained from adding an
isotropic force 2n�k . kc jK , t�k2y�k, t� to the (reduced)
NS dynamics at kc , k # K . As will be shown below the
additional force accounts for a rapid depletion of the en-
ergy cascade in the range kc , k # K (near the cutoff)
without perturbing the modes in the accelerated cascade
range. Further, incompressibility and Galilean invariance
of the NS equations are preserved. Note that only the
amplitude of modes kc , k # K is rescaled, their phase
remaining untouched. The model spectral energy budget
reads∑

≠

≠t
1 2neddy�k jK , t�k2

∏
E�k, t� � T �k jK , t�

1 einj�k, t� ,

where T �k jK , t� is the energy-transfer spectrum reduced
to triad interactions among resolved modes. Following [3],
neddy�k jK , t� � nmol 1 n�k . kc jK , t� may be viewed
as a dynamic wave-number dependent eddy viscosity.

The variable component n�k . kc jK , t� of the eddy
viscosity is adjusted so as to extrapolate the mean E�k� �
k23 scaling in the damping zone, i.e.,

E�k� � E�kc� �k�kc�23, kc , k # K . (4)

The scaling E�k� � k23 is heuristically associated with
the joined k independent enstrophy cascade and identi-
4034
cally zero energy cascade in two-dimensional turbulence
[4]. Here the enforced E�k� � k23 is expected to transport
vorticity to k . kc and to rapidly deplete the energy flux.
This mechanism is connected with the picture of locally
two-dimensional fluid motion around regions of concen-
trated vorticity (coherent vorticity structures) displaying a
brutal energy penalty as the fluid reaches the core of these
regions. It is noteworthy that the scaling E�k� � k23 has
been experimentally evidenced in the vicinity of a stable,
strong 3D vortex whose surrounding fluid is brought to spi-
ral rapidly towards the core of the vortex [5]. An important
point to note here is the potential nonlocality of the cascade
process in the damping range. Indeed, following Kraich-
nan’s arguments [4], a k23 spectrum is consistent with all
triad interactions contributing equally (the same amount) to
the energy transfer at k. It is therefore expected that the en-
ergy cascade (around kc) no longer operates through eddy
breaking but rather through locally coherent (in physical
space) fluid motions. Recall that the unmodified phases of
the forced modes in the model effectively allow for such
coherence to be established [6].

Numerical experiments performed with a parallel dis-
tributed memory pseudospectral NS solver [7] are pre-
sented next. The large-scale kinetic-energy forcing is
adjusted at each time step by scaling the amplitudes of
modes 1.5 # k , 2.5 uniformly (phases are left to fluctu-
ate freely), so as to compensate exactly the losses due to
eddy dissipation in the kinetic-energy budget. This robust
and efficient forcing scheme permits a rapid relaxation to
stationarity [8]. Results from DNS �K . Kdiss� and finite-
mode model simulations �K ø Kdiss� are compared using
identical initial conditions and statistics sampled in space
and time. Note that finite-mode simulations will be refer-
red to as large-eddy simulations (LES) in figure captions.

In practice the cutoff wave number K is fixed and the
molecular viscosity is chosen such that kc � 2K�3; the
damping zone extends over 1�6 of a decade. Figure 3
below shows that this width is sufficient for the com-
pletion of a rapid falloff of the energy flux. At
each time step n�k . kc jK , t� is updated in order to
enforce a power-law scaling of E�k, t� in the damp-
ing zone; E�k, t� � E�kc, t� �k�kc�2a�t� with a�t� �
2�≠ logE�k, t��≠ logk�k�kc . This is to be viewed as
a linear extrapolation in log - log coordinates. An al-
ternative adjustment scheme consists in determining
kc�t� at each time step and extrapolating E�k, t� �
E�kc�t�, t� �k�kc�t��23 for k . kc�t�. Both methods have
been tested and yield identical results. For convenience
the first one has been retained. The derivative is estimated
by a least-squares approximation. Comparisons between
aliased and dealiased (using the zero padding) schemes
have shown that the eddy viscosity suitably damps aliasing
errors, mainly concentrated in near wave number K shells.

The normalized mean kinetic-energy and squared-
vorticity spectra [9] are shown in Fig. 2. They collapse
in the whole energy-containing range, indicating that



VOLUME 86, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 APRIL 2001
−1.5 −1 −0.5 0 0.5 1

−2

0

2

log
10

(k / k
p
)

lo
g 10

(E
(k

) 
/ E

(k
p))

K41 : E(k) ~ k−5/3

E(k) ~ k−3

DNS

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0
(k) ~ k−1

DNS

log
10

(k / k
p
)

lo
g 10

(Ω
(k

) 
/ Ω

(k
p))

k=k
c
 

k=k
c
 

Rλ=130 

FIG. 2. Energy E�k� and squared-vorticity V�k� spectra from
direct and finite-mode numerical simulations. The spectra col-
lapse when normalized by the wave number kp of maximum
squared-vorticity spectrum and spectrum amplitude at kp [9].

our closure scheme does not notably affect energetics at
wave numbers k # kc. Normalized mean energy fluxes
for various Reynolds numbers collapse in Fig. 3. As
expected, energy fluxes rapidly falloff and vanish in the
damping zone.

An effective eddy viscosity is defined by neddy�k jK� �
2T �k jK��2k2E�k�. In Fig. 4, neddy�k jK� exhibits a cusp
near K to compensate missing energy exchanges with un-
resolved modes and to avoid a piling up of energy at the
bottom of the cascade. Interestingly all eddy viscosities
collapse, showing some degree of self-similarity in the
energetics of the rapid depletion process. Note that this
self-similar form is expected to depend on the ratio kc�K .
As k ! kc

1, neddy�k jK� ! nmol smoothly, suggesting
that k & kc modes are suitably synchronized with k $ kc

modes.
Consider now the two-point correlations of the unfil-

tered velocity field y�x, t�. All Fourier modes have been
retained in order to examine small-scale effects of our high
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FIG. 3. Normalized mean kinetic-energy fluxes, from direct
(DNS) and finite-mode (LES) numerical simulations, collapse
in the energy-containing range of wave numbers.
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FIG. 4. The effective viscosity neddy�k jK� is displayed for
different LES simulations. As k ! kc, neddy�k, K� ! nmol
smoothly. Oscillations for k $ kc, at low resolution, result
from the discrete wave-number decomposition.

wave-number damping. We focus first on moments of the
longitudinal velocity increments dky�r� across a distance
r , also called structure functions [1]. An exact relation, the
Howarth-VonKarman equation [1], involving the second-
and third-order structure functions at small scales, follows
from the NS equations:

	dyk�r�3
 � 24�5´injr 1 6nd	dyk�r�2
�dr .

This equation is verified in Fig. 5. The probability density
functions of dky�r� are compared in Fig. 6. The agreement
is satisfactory.

Relative scalings of velocity structure functions have re-
cently received much interest [10,11]. The (local) intermit-
tency exponent m�r� is given by

2 1 m�r� � d log	jdyk�r�j6
�d log	jdyk�r�j3
 .

Results displayed in Fig. 7 are consistent with effective
values m̄ & 20.2 as reported in [11]. At Rl � 130, we
observe that all estimates of m�r� almost coincide at scales
r . l, the Taylor microscale [1]. Discrepancies at r # l

are clearly related to our rapid depletion procedure. The
Taylor microscale is here used as a reference scale and
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FIG. 6. Distributions of longitudinal velocity increments, at
various scales, collapse. Small discrepancies may be due to
the two sets of compared scales not being exactly identical.

should not be taken as a strict lower bound for our model.
We would like to stress that m�r� is a sharp (local) estima-
tor of turbulence scaling properties. Finally, the numeri-
cal tests strongly suggest that both energetics and scaling
properties of the energy-containing turbulent fluctuations
are well reproduced by this model.

The present rapidly depleted energy cascade model is
of practical interest as it allows us to investigate the sta-
tistics at scales r . l, without resolving the full NS sys-
tem. A factor 20 gain in CPU time compared to a DNS
at Rl � 130 is obtained. More importantly we may reach
Rl � 550 in a 10243 LES. In virtue of the relatively ex-
tended F�k� � log�k� scaling (see Fig. 1) the closure is not
very sensitive to the exact values of �K , kc, nmol�. From a
low-resolution simulation higher-resolution runs can be di-
rectly set up by simply rescaling the parameters K ! aK ,
kc ! akc, and nmol ! a24�3nmol. However, the model is
of theoretical interest also, because understanding the in-
flection point of the kinetic-energy flux and recasting the
forced dynamics into the framework of nonequilibrium sta-
tionary states [12] are open and important problems.

Molecular viscosity acting at low wave numbers is es-
sential in that it progressively slows the energy cascade.
Our model has shown that it is indeed possible to rapidly
“thermostate” the cascade dynamics [12] from k � kc on-
wards when the cascade finally reaches a constant flow
rate. Note that thermostating the energy cascade in the
acceleration range, i.e., at k ø kc, produces strong back-
ward perturbations on unforced modes. The nonlocality
of triad interactions around kc is thought to be responsible
4036
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FIG. 7. The intermittency exponent m�r�. The scale is nor-
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for the adequate phase synchronization (coupling) of ther-
mostated modes with unforced modes and could provide
a clue to the relevance of this model. Finally, including
true viscosity at low wave numbers was already suggested
in [3,6], where it was demonstrated that proper dissipation
must act on low wave-number modes to be consistent with
an energy cascade displaying an E�k� � k25�3 spectrum.
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