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Experimental Observation of Spatial Antibunching of Photons
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We report an interference experiment that shows transverse spatial antibunching of photons. Using
collinear parametric down-conversion in a Young-type fourth-order interference setup, we show interfer-
ence patterns that violate classical Schwarz inequality and should not exist at all in a classical description.
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Photon antibunching in a stationary field is recognized
as a signature of nonclassical behavior, for its description
is not possible in terms of a nonsingular positive Glauber-
Sudarshan P distribution [1]. It is well known that any
state of the electromagnetic field that has a classical ana-
log can be described by means of a positive P distribution
which has the properties of a classical probability func-
tional over an ensemble of coherent states.

The classical intensity correlation function �I�r, t� 3

I�r, t 1 t�� for stationary fields must obey the following
inequality [1]:

�I�r, t�I�r, t 1 t�� # �I2�r, t�� . (1)

All field states described in terms of a positive nonsingular
P distribution must obey the standard quantum mechani-
cal counterpart of (1), where products of intensities are
replaced by ordered products of photon density operators
[1], that is,

�T :Î�r, t�Î�r, t 1 t�:� # �:Î2�r, t�:� , (2)

where T :: stands for time and normal ordering. Photon
density operators are defined as

Î�r, t� � V̂y�r, t�V̂�r, t� , (3)

where

V̂�r, t� �
X
k,s

âk,sek,sei�k?r2vt�,

âk,s is the annihilation operator for the mode with wave
vector k and polarization s, ek,s is the unit polarization
vector, and v � ck.

Inequality (2) means that, for such class of fields, pho-
tons are detected either bunched or randomly distributed
in time. Photon antibunching in time, characterized by the
violation of (2), was predicted by Carmichael and Walls
[2], Kimble and Mandel [3], and was first observed by
Kimble et al. in resonance fluorescence [4].

Let us now turn to space domain and consider that the
transverse field profile of a given stationary light beam
propagating along the z direction is described by a com-
plex stochastic vector amplitude V �r, t� with an associ-
ated probability functional P �V �. Here, r lies in a plane
transverse to the propagation direction. The average inten-
sity at a point r is
0031-9007�01�86(18)�4009(4)$15.00
�I�r, t�� � �V ��r, t�V �r, t��

�
Z

P �V � jV �r, t�j2 dV , (4)

and the two-point intensity correlation function

G�2,2��r1,r2, t� � �I�r1, t�I�r2, t 1 t��

is

G�2,2��r1,r2, t�

�
Z

P �V � jV �r1, t1�j2jV �r2, t2�j2 dV . (5)

Its time dependence is restricted to the difference t �
t1 2 t2, since the field is assumed to be stationary. In
the space domain, the concept analogous to stationarity is
homogeneity. For a homogeneous field, the expectation
value of any quantity that is a function of position is in-
variant under translation of the origin [1]. In particular,

G�2,2��r1,r2, t� � G�2,2��d, t� (6)

and

�IN �r 1 d, t 1 t�� � �IN �r, t�� , (7)

where d � r1 2 r2 and N � 1, 2, . . . .
Applying Schwarz inequality,

�I�r, t�I�r 1 d, t 1 t��2 # �I2�r, t�� �I2�r 1 d, t 1 t�� .
(8)

By means of (7),

�I�r, t�I�r 1 d, t 1 t�� # �I2�r, t�� . (9)

Quantum mechanically,

�T :Î�r, t�Î�r 1 d, t 1 t�:� # �:I2�r, t�:� , (10)

that is,

G�2,2��d, t� # G�2,2��0, 0� . (11)

Analogously to what was concluded from inequality (2), for
field states represented by positive nonsingular Glauber-
Sudarshan distributions, that is, fields that admit the clas-
sical stochastic description assumed above, inequality (10)
implies that photons are detected either spatially bunched
or randomly spaced in a transverse detection screen. Spa-
tial antibunching of photons has been predicted by some
© 2001 The American Physical Society 4009
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authors [5–9] and a possible experiment was recently pro-
posed to observe it in squeezed states [8,9].

In this paper we show that strong antibunching in one
transverse direction can be observed in down-converted
light, violating (10) by several standard deviations. The
effect is produced by fourth-order interference of a two-
photon beam diffracted by a birefringent double slit. The
experimental setup is depicted in Fig. 1. A light beam of
l � 702 nm is produced by collinear type-II down-con-
version in a 2-mm-long nonlinear crystal (BBO) pumped
by an argon laser beam with l � 351 nm. The uv beam
transmitted by the crystal is removed from the down-
converted beam by a laser mirror �M� transparent to
702 nm. A birefringent double slit �S� is constructed as
follows. A single slit of dimensions 0.60 mm 3 5 mm is
divided in two by a 0.20-mm-wide absorbing strip, defin-
ing two parallel slits of dimensions 0.20 mm 3 5 mm. In
front of each slit there is a quarter-wave plate (Q1 and
Q2), as shown in Fig. 2. One wave plate �Q1� has its fast
axis parallel to the slits, whereas the other one �Q2� has
its fast axis perpendicular to the slits. With such align-
ment, the waveplates introduce a phase difference of p

between the two slits. This arrangement is placed in the
down-converted beam, 38 cm from the crystal. The
pumping beam is focused right on the plane of the double
slit by a lens �L� of 500 mm focal length. Assuming that
the beams are propagating along the z direction, this
focusing causes the fourth-order correlation function of
the down-converted beam to be concentrated on points
satisfying j1 1 j2 � 0, where j1 and j2 are position
vectors on the plane of the double slit [10]. The focusing
is essential to produce the appropriate spatial dependence
of the diffracted field [11]. In order to make possible that
two detectors (D1 and D2) share the same transverse po-
sition without being limited by their physical dimensions,

FIG. 1. Experimental setup. L is a lens of focal length f �
500 mm, BBO is a 2-mm-long b-BaB2O4 nonlinear crystal cut
for collinear type-II 351 ! 702 nm down-conversion, M is a
uv high reflectance mirror, Q1 and Q2 are quarter-wave plates,
S is a double slit, BS is a 50:50 beam splitter, D1 and D2 are
avalanche photo-diodes working in photon counting mode.
4010
a beam splitter (BS) is inserted into the down-converted
beam, with D1 and D2 placed in front of each exit port. In
front of each detector, there is a single slit of dimensions
0.20 mm 3 3 mm aligned horizontally (parallel to the
slits in S), followed by an interference filter with a band-
width of 40 nm, centered at 690 nm, and a lens focused
on the detector’s active area. The optical path length from
the double slit S to the detectors D1 and D2 is 70 cm.
D1 and D2 are mounted on precision translation stages
and their vertical positions are set by computer-controlled
stepping motors. Single and coincidence counts were
measured while D1 and D2 were scanned in the vertical
direction (x axis), as will be described below.

Ideally, the transverse fourth-order correlation function
G�2,2��r, 0� is proportional to the coincidence rate between
two punctual detectors separated by r, with a negligible
resolving time. Since the detectors are not punctual and the
coincidence resolving time is finite (10 ns in our setup),
what was actually measured is a convolution of G�2,2��d, t�
with the sampling window DxDyDt, where Dx and Dy
represent the dimensions of the detector entrance slit
�0.20 mm 3 3 mm� and Dt is the resolving time of the
coincidence counter (10 ns). For the purpose of demon-
strating the effect, however, we will ignore this correction
by considering Dx � 0, Dy ! `, and Dt � 0. Under
these conditions, it is possible to show [11] that, for small
displacements, the coincidence rate is proportional to

1 2 cos

∑
2pd
lz

�x2 2 x1�
∏

, (12)

where l is the wavelength of the down-converted field
(702 nm), d is the double slit separation (0.40 mm), z
is the optical path length between the double slit and the
detectors (70 cm), and x1 and x2 are the vertical positions
of detectors D1 and D2, respectively.

Before taking correlation measurements, the accuracy
of vertical positioning was checked by the following

FIG. 2. The birefringent double slit. Q1 and Q2 are quarter-
wave plates aligned with orthogonal fast axes, and S is a double
slit with clear apertures of 0.20 mm 3 5 mm separated by a
0.20 mm obstacle.
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FIG. 3. D1�¶� and D2�≤� single counts taken with a 0.20 mm
diameter wire stretched horizontally in front of the beam splitter
and the double slit removed. This measurement was taken in
order to check the accuracy of detectors vertical positioning.

procedure: With the double slit S removed, a horizontally
aligned wire was stretched in front of the beam splitter,
at x � 0, and single counts were registered in sampling
times of 5 s, while the detectors were scanned vertically.
The result is shown in Fig. 3. The two counting profiles
are not identical due to differences in the overall quantum
efficiencies of D1 and D2.

Figures 4–7 summarize the results of single counts
and coincidence measurements taken in sampling times
of 1000 s in several different situations. All coincidence
patterns were fit to expression (12) plus a background.
Vertical error bars are statistical with two standard devia-
tions in length, whereas horizontal ones correspond to the

FIG. 4. Single counts �¶� and coincidences �≤� taken with D2
kept in x2 � 0 and D1 scanned vertically.
FIG. 5. Single counts �±� and coincidences �≤� taken with D1
kept in x1 � 0 and D2 scanned vertically.

width of the detectors’ entrance slits. The results shown in
Fig. 4 refer to the situation in which detector D2 is kept at
x2 � 0 and detector D1 is scanned vertically. The single
counts, although not constant, do not show any oscilla-
tion to which one could attribute the oscillation in coin-
cidences. The same is true in Fig. 5, where detector D1
was kept in x1 � 0 and D2 was scanned vertically. When
D1 and D2 were scanned together �x1 � x2�, a fairly con-
stant background of coincidences was recorded, as shown
in Fig. 6. This background, that should be zero as well as
the minima in Figs. 4 and 5, is due to the finite width of the
detectors’ entrance slits (0.20 mm). A final measurement
was performed by scanning D1 with D2 kept in the posi-
tion x2 � 20.55 mm, which corresponds to a maximum

FIG. 6. D1 single counts �¶�, D2 single counts �±�, and coinci-
dences �≤� taken when both D1 and D2 were scanned vertically,
keeping x1 � x2.
4011
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FIG. 7. Single counts �¶� and coincidences �≤� taken with D2
kept in x2 � 20.55 mm and D1 scanned vertically.

of coincidences in Fig. 5. The results are plotted in Fig. 7,
showing that the minimum in coincidences was displaced
to x1 � x2 � 20.55 mm.

All the interference patterns shown here satisfy

G�2,2��d, 0� . G�2,2��0, 0� , (13)

in clear violation of expression (11), characterizing the
presence of transverse spatial antibunching of photons.

Let us analyze these results from another point of view.
Some years ago, it was pointed out [12] that all second- and
fourth-order optical interference effects observed so far
have close classical analogs with the same harmonic pat-
tern, differing only in their visibilities. This is not the case
4012
with our results. Since the minimum of fourth-order inter-
ference occurs for x1 � x2 in the absence of second-order
interference, any classically predicted visibility different
from zero would violate Schwarz inequality. Therefore,
our results can be regarded as a truly quantum fourth-
order interference effect.
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