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Solitonic Fullerene Structures in Light Atomic Nuclei
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The Skyrme model is a classical field theory which has topological soliton solutions. These solitons
are candidates for describing nuclei, with an identification between the numbers of solitons and nucleons.
We have computed numerically, using two different minimization algorithms, minimum energy configu-
rations for up to 22 solitons. We find, remarkably, that the solutions for seven or more solitons have
nucleon density isosurfaces in the form of polyhedra made of hexagons and pentagons. Precisely these
structures arise, though at the much larger molecular scale, in the chemistry of carbon shells, where they

are known as fullerenes.
DOI: 10.1103/PhysRevLett.86.3989

The Skyrme model [1] was first proposed in the early
1960s as a model for the strong interactions of hadrons,
but it was set aside after the advent of quantum chromo-
dynamics (QCD). Much later Witten [2] showed that it
could arise as an effective description at low energies in
the limit where the number of quark colors is large. Sub-
sequent work [3] demonstrated that the single soliton so-
lution (known as a Skyrmion) reproduced the properties
of a nucleon to within an accuracy of around 30%, which
is quite an achievement, given that there is, at present, no
practical way of calculating the properties of nuclei from
QCD via, for example, lattice gauge theory.

In order to study nuclei of a larger atomic number one
first needs to compute the minimal energy configurations
of multisolitons, since in the Skyrme model there is an
identification between the numbers of solitons and nu-
cleons. Here, we present the results of an extensive set
of simulations using two very different approaches de-
signed to compute the minimal energy solutions for up to
22 solitons. With a small number of caveats, these re-
sults establish an attractive analogy with fullerene cages
familiar in carbon chemistry [4,5]. Although these classi-
cal solutions must first be quantized before a final com-
parison with experimental data can be performed it is
expected that quantum corrections will be relatively small,
since we are dealing with solitons, and so the classical
solutions will contain important physically relevant infor-
mation about the properties of nuclei.

The Skyrme model is defined in terms of an SU(2) val-
ued field U(x), with an associated static energy

/{Tr(a,»Ua,-Ul)

T 2472
- %Tr([(al-U)U_l,(ajU)U_l]z)}d3x.
(1

Note that the two physically relevant constants which
would appear in front of each of the two terms in the
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most general version of (1) have, for convenience, been
scaled out by an appropriate choice of energy and length
units. For finite energy, we impose the boundary condition
U(») = 1, and pions are described by the usual quantum
field theory treatment of fluctuations of the Skyrme field
around this vacuum value, but nucleons arise in a very
different manner, as classical soliton solutions.

The boundary condition implies a compactification of
the domain, and therefore U is a map from compactified
R? ~ §3 — S3, since §3 is the manifold of the target
space, the group SU(2). Such mappings have nontrivial
homotopy classes characterized by an integer valued wind-
ing number, which has the explicit representation
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B, which stands for the baryon number or the number of
nucleons, is often referred to as the topological charge
and is the number of solitons in a given field configura-
tion. A simple manipulation of Egs. (1) and (2) allows one
to deduce the Faddeev-Bogomolny (FB) bound E = |B|.
Generically, a charge B field will have an energy density
E [the integrand of (1)] and a baryon density B [the in-
tegrand of (2)] both of which consist of B well-separated
lumps localized in space. However, as we discuss below,
this is not the case for the minimal energy fields in which
the solitons are close together.

The mathematical problem is to find, for each integer
B, the field U which minimizes the energy (1) subject to
the constraint (2). This can be addressed by numerical
algorithms designed to minimize either a discretized ver-
sion of the energy (1) or, equivalently, by solving a dis-
cretized version of the second-order field equations which
follow from the variation of (1). This first approach is a
very demanding computational exercise (see Ref. [6] for a
detailed discussion), requiring the use of modern parallel
supercomputers, but results for low charge (B = 8) were
found using this method [7—10]. The results presented
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here extend this numerical approach up to B = 22. In ad-
dition, we have applied a second, very different, technique
to the construction of minimal energy solitons which not
only allows us to have greater confidence that the numeri-
cal solutions we have constructed are indeed the global
minima, but in addition provides a good analytic approxi-
mation to the numerical solutions, making it much easier
to identify their structure and symmetries.

Our second approach makes use of the remarkable fact
that minimal energy Skyrmions can be approximated by an
ansatz involving rational maps between Riemann spheres
[11], a result which we will further confirm. The Skyrme
field is a map U: IR® — S3, so it is not immediately obvi-
ous how to obtain such a map from rational maps which are
between spheres S — S2. Briefly, the domain S of the
rational map is identified with concentric spheres in IR?,
and the target S? with spheres of latitude on S3. To present
the ansatz it is convenient to use spherical coordinates in
IR3, so that a point x € IR is given by a pair (r, z), where
r = |x| is the distance from the origin and z is a Riemann
sphere coordinate, namely, z = tan[6/2]exp[i¢], where
0 and ¢ are the normal spherical polar coordinates.

Now, let R(z) be a degree B rational map; that is,
R = p/q, where p and g are polynomials in z such
that max[deg( p),deg(q)] = B, with no common factors.
Given such a rational map the ansatz for the Skyrme
field is

if(r) (1 - |R|? 2R }
1+|R|2( 2R IR]? - 1) > )

where f(r) is a real profile function satisfying the bound-
ary conditions f(0) = 7 and f() = 0. This is deter-
mined by minimization of the Skyrme energy of the field
(3) given a particular rational map R. The ansatz yields
an exact solution for B = 1 and it was shown in Ref. [11]
that for 2 = B = 8§, suitable maps exist for which the field
(3) is a good approximation to the numerically computed
solutions, in the sense that the symmetry is identical and
the energy is only 1% or 2% above the numerically com-
puted values.

Substituting the ansatz (3) into the energy (1) produces
an energy function on the space of rational maps, which
we denote by I(R), given by
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Therefore, our second approach to computing minimal en-
ergy Skyrmions is to search the (finite dimensional) pa-
rameter space of general degree B rational maps to find
the one which minimizes J(R), using a powerful numeri-
cal minimization technique known as simulated annealing
[12].

Clearly, this procedure is not guaranteed to find the mini-
mum energy Skyrmion since the topography of the rational
map space may be slightly different to that of the full non-
linear field theory, but as we shall see for the most part
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it works well, only encountering difficulties when there
are two or more Skyrmion solutions, either saddle points
or genuine local minima, with very similar energies. We
use the first minimization technique as a check, and in the
small number of cases where relaxing well-separated clus-
ters consistently yield a different solution for a wide range
of initial conditions, the symmetry of the Skyrmion solu-
tion is identified by eye from the baryon density isosur-
face, and an approximate rational map can then be found
by relaxing in the rational map space restricted to have the
correct symmetry. In such cases the values of I for the
different solutions are usually very close [6].

The results of applying the two minimization techniques
in this way are presented in Table [ for 1 = B = 22 and
pictorially in Fig. 1 for 7 = B = 22. In all but a small
number of cases (B = 10, 14, 16, 22) we find that the mini-
mum energy Skyrmion and that in the rational map space
coincide. Furthermore, for each of these special cases, ex-
cept B = 14, we were able to find a map with the same
symmetry. For B = 14 we were prevented from finding a
rational map approximation for the true minimum since its
symmetry group, C», is a subgroup of that of the minimum
energy rational map, D;.

The baryon density isosurface can be associated with
a polyhedron whose edges and vertices coincide with the
regions in which the baryon density is localized. Exami-
nation of the solutions shows that, with the exception

TABLE I. A summary of the symmetries and energies of
the Skyrmion configurations which we have identified as the
minima. Included is the ionization energy (/z)—that required to
remove one Skyrmion—and the binding energy per Skyrmion
(AE/B)—that required to split the charge B Skyrmion into B
charge one Skyrmions divided by the total number.

B G E/B Eg Iy AE/B
1 0(3) 1.2322 1.2322  0.0000  0.0000
2 De 1.1791 23582 01062  0.0531
3 T, 1.1462 3438  0.1518  0.0860
4 o 1.1201 44804  0.1904  0.1121
5 Doy 1.1172 55860  0.1266  0.1150
6 Dy 1.1079 6.6474  0.1708  0.1243
7 Y, 1.0947 7.6629 02167  0.1375
8 Dea 1.0960 8.7680  0.1271 0.1362
9 Dy 1.0936 9.8424  0.1578  0.1386

10 D5 1.0904 109040  0.1706  0.1418

11 Dy, 1.0889 119779  0.1583 0.1433

12 T, 1.0856 13.0272  0.1829  0.1466

13 0 1.0834 14.0842  0.1752  0.1488

14 C, 1.0842 15.1788  0.1376  0.1480

15 T 1.0825 162375  0.1735 0.1497

16 D, 1.0809 17.2944  0.1753 0.1513

17 Y, 1.0774 183158 02108  0.1548

18 D> 1.0788 19.4184  0.1296  0.1534

19 D5 1.0786 204934  0.1572  0.1536

20 Dea 1.0779 215580  0.1676  0.1543

21 T, 1.0780 226380  0.1522  0.1542

22 D5 1.0766  23.6852  0.1850  0.1556
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FIG. 1. The baryon density isosurfaces for the solutions which
we have identified as the minima for 7 = B = 22, and the
associated polyhedral models. The isosurfaces correspond to
B = 0.035 and are presented to scale, whereas the polyhedra
are not to scale.

of B =9 and 13, the associated polyhedra are trivalent
with 4(B — 2) vertices [the geometric energy minimiza-
tion (GEM) rules] as predicted in Ref. [10], and for
B = 7 they are comprised of 12 pentagons and 2(B — 7)
hexagons. Such structures are common in a wide range
of physical applications and have become a hot topic in
carbon chemistry where they correspond to shells with
carbon atoms placed at the vertices, the most famous
being the icosahedrally symmetric Buckminsterfullerene
Ceo structure, which is also the traditional soccer ball
design. For this reason we refer to such solutions as being
of the fullerene type, with the prediction, spectacularly

confirmed by our results in all cases except B = 9 and
B = 13, that the polyhedron associated with the Skyrmion
of charge B has a structure from the family of carbon
cages for Cyp—2).

We had predicted in Ref. [10] that the Buckyball Cg
configuration would be found for B = 17 and indeed
an approximate rational map description was found in
Ref. [11]. Here, we see that such a solution is the mini-
mum energy solution of the full nonlinear field equations
and in the rational map space. We see also that a large
number of the other solutions have platonic symmetries
which, from the mechanical point of view, implies the
structure packs well. It would appear, therefore, that such
structures may be preferred over less symmetric ones in
the minimization procedure. We should note, however,
that this is not always the case and rational maps with
platonic symmetries can easily be found, for example, at
B = 9, which do not give minima [6].

The polyhedra found for B = 9 and 13 do not obey the
GEM rules nor are they of the fullerene type, since they
contain four-valent links. They can, however, be related
to a fullerene via the concept of symmetry enhancement,
as follows. A very common structure within the fullerene
polyhedra is two pentagons separated by two hexagons. If
the edge which is common to the two hexagons is shrunk to
have zero length, the four polygons then form a C4 sym-
metric configuration containing a four-valent bond. For
the case of B = 9, the polyhedron can be thought of as
being created from a D, symmetric fullerene by the action
of two such operations, and in the B = 13 case six opera-
tions can be used to convert another D, configuration into
one with O symmetry. Empirically, we see that each sym-
metry enhancement operation appears to be accompanied
by an equivalent one antipodally placed on the polyhedron,
and single operations appear not to occur.

We have computed the energies of the solutions which
are presented in Table I using the rational map ansatz to
create initial conditions which are then relaxed under the
action of the full nonlinear field equations. It should be
noted that these values are (for B > 1) always a little less
than the corresponding values computed solely within the
rational map ansatz. On the discrete grid the computed
value of the baryon number, By, is less than the cor-
responding integer B suggesting that the finite difference
approximations used to compute the energy Egis will un-
derestimate the true energy. Moreover, in the initial con-
ditions one must impose the boundary condition U = 1 at
the edge of the box. By using a wide range of different
grid sizes and spacing we have shown [6] that the value
of E4;s/Bais can be computed accurately, and hence so can
the true energy using the formula Eg = B X (Egis/Buis)-
We claim that our determinations of Eg;s/Bgjs are accurate
in the absolute sense to within #0.001 and that the relative
values are probably even more accurate.

We have also computed the ionization energy
Ip = Egp_ + E; — Ep, which is the energy required
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FIG. 2. On top the ionization energy I plotted against B. No-
tice that the most stable solutions are those with the most sym-
metry, B = 4,7,17, while the least stable are those with little
symmetry B = 5,8,14,18. On the bottom the binding energy
per baryon AE /B plotted against B. We see that for large B the
binding energy appears to level out at around 0.15-0.16 as one
might expect in a simple model of nuclei.

to remove a single Skyrmion, and the binding energy
per nucleon AE/B = E| — (E/B), which is the energy
required to separate the solution into B well-separated
Skyrmions divided by the total baryon number. These
values are tabulated in Table I and are plotted against B
in Fig. 2. The ionization energy is largest for the most
symmetrical solutions B = 4, 7, and 17 and is least for

3992

those with little symmetry, B = 5, 8, 14, and 18, which
is very much as one would expect. The binding energy
appears to increase to an asymptotic value of around
0.15-0.16. This is a clear consequence of the FB bound
since it is linearly related to E/B.

In fact, the value of E/B appears to have an asymptotic
value which is around 6%—7% above the FB bound, com-
patible with the value obtained for a hexagonal lattice [13]
which is the limit of an infinitely large fullerene (the ana-
log of graphite in carbon chemistry). It is clear that an
infinitely large shell is physically unlikely and that there
probably exists a value B: such that for B > B, the solu-
tions no longer look like fullerene shells. In such a case the
solutions are likely to begin to look more like portions cut
from the infinite Skyrme crystal [14] whose E/B is only
4% above the FB bound. Another possibility is an inter-
mediate state comprised of multiple shells [15], although
all the known configurations of this kind have much larger
values of E/B. We have definitely shown that B. > 22
and we believe that the connection between Skyrmions,
fullerenes, and rational maps will continue for much larger
values of B.
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