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Domain Walls of High-Density QCD
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We show that in very dense quark matter there must exist metastable domain walls where the axial
U(1) phase of the color-superconducting condensate changes by 2p. The decay rate of the domain
walls is exponentially suppressed and we compute it semiclassically. We give an estimate of the critical
chemical potential above which our analysis is under theoretical control.
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Introduction.—Domain walls are common in field the-
ory [1]. They are configurations of fields interpolating
between two vacua. If these two vacua are distinct the do-
main wall cannot decay. There are, however, theories with
only a single vacuum, in which, nevertheless, domain-wall
configurations exist. The most notable example is the the-
ory of N � 1 axion [2]. In such theories the decay of the
domain wall is possible, though, the decay rate is often
suppressed. It is generally believed that there are no do-
main walls of either kind in the standard model. It was
advocated only recently that long-lived domain walls may
exist in QCD [3] at zero temperature and baryon density.
The possibility of very unstable walls was noticed earlier
in Ref. [4]. Unfortunately, no theoretical control is pos-
sible in this nonperturbative regime. Somewhat related but
different domain-wall configurations were also discussed
in Ref. [5] in the context of the decay of the metastable
vacua possibly created in heavy ion collisions.

In this paper we show that, in the regime of high baryon
densities, where relevant physics is under theoretical con-
trol, QCD must have domain walls. Across the wall,
the U�1�A phase of the color-superconducting condensate
varies from 0 to 2p . Thus, the same ground state is on
both sides of the domain wall and, consequently, the do-
main wall is metastable. Our proof of the existence and the
long lifetime of such domain walls relies on the following
three facts: (i) the instanton density is small at large chemi-
cal potential, suppressing the effect of chiral anomaly,
(ii) the U�1�A symmetry is spontaneously broken, and
(iii) the decay constant of the pseudoscalar singlet boson
is large. All these effects are known, from earlier stud-
ies, to occur in the color-superconducting phases of QCD.
However, as far as we know, their implication for the do-
main walls has not been explored. These domain walls are
similar to the walls of Ref. [3], which may exist, but no
definite statement can be made in this case. Asymptotic
freedom of QCD allows us to assert the existence of do-
main walls in the high baryon density regime reliably. The
properties of the walls can be determined by controllable
weak-coupling calculations.
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We will also make a rough estimate of the critical chemi-
cal potential above which such domain walls must ap-
pear within weak-coupling instanton calculation. This
chemical potential is relatively high (though not unrea-
sonably high). In the model of QCD with two light fla-
vors, the critical chemical potential is estimated to be about
6LQCD � 1 GeV, close to the scale at which instanton
interactions become relevant [6]. We also calculate the
semiclassical lifetime of the domain wall and find it to be
exponentially long.

Domain walls in two-flavor high-density QCD.—The
simplest model with high-density domain walls is QCD
with Nf � 2 massless quark flavors (u and d). This model
is a rather good approximation to realistic quark matter
at moderate densities, such as in the neutron star interi-
ors. We recall that the ground state of this model at high
baryon densities is the two-flavor color-superconducting
state [7,8], characterized by the condensation of diquark
Cooper pairs. These pairs are antisymmetric in spin �a, b�,
flavor �i, j�, and color �a, b� indices:

�qia
Laq

jb
Lb�� � eabeijeabcXc,

�qia
Raq

jb
Rb�� � eabeijeabcYc.

(1)

The condensates Xc and Yc are complex color three-
vectors. In the ground state, Xc and Yc are aligned along
the same direction in the color space, and they break
the color SU�3�c group down to SU�2�c. The lengths of
these vectors are equal, jXj � jY j, and can be computed
perturbatively (see below).

In perturbation theory, there is a degeneracy of the
ground state with respect to the relative U(1) phase be-
tween Xa and Ya. This is due to the U�1�A symmetry
of the QCD Lagrangian at the classical level. This fact
implies that the U�1�A symmetry is spontaneously broken
by the color-superconducting condensate. Since this is a
global symmetry, its breaking gives rise to a Goldstone
boson, which we denote by h since it carries the same
quantum numbers as the h boson in vacuum.
© 2001 The American Physical Society 3955
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It is possible to construct the field corresponding to h

boson explicitly. The following object,

S � XYy � XaYa�, (2)

in contrast to X and Y , is a gauge-invariant order parameter.
Furthermore S carries a nonzero U�1�A charge. Indeed,
under the U�1�A rotations,

q ! eig5a�2q , (3)

the fields (1) transform as X ! e2iaX, Y ! eiaY , and
therefore S ! e22iaS. Thus, the color-superconducting
ground state, in which �S� fi 0, breaks the U�1�A symme-
try. The Goldstone mode h of this symmetry breaking is
described by the phase w of S,

S � jSje2iw . (4)

Under the U�1�A rotation (3), w transforms as

w ! w 1 2a . (5)

At low energies, the dynamics of the Goldstone mode w

is described by an effective Lagrangian, which, to leading
order in derivatives, must take the following form:

L � f2��≠0w�2 2 u2�≠iw�2	 . (6)

This Lagrangian (6) contains two free parameters: the de-
cay constant f of the h boson and its velocity u. In gen-
eral, the velocity u of the h boson may be different from
the speed of light (i.e., unity) since the Lorentz invariance
is violated by the dense medium. For large chemical po-
tentials m ¿ LQCD, the leading perturbative values for f
and u have been determined by Beane, et al. [9]:

f2 �
m2

8p2 , u2 �
1
3

. (7)

In particular, the velocity of the h bosons, to this order, is
equal to the speed of sound. The fact that f � m plays an
important role in our further discussion.

It is well known that the U�1�A symmetry is not a true
symmetry of the quantum theory, even when quarks are
massless. The violation of the U�1�A symmetry is due
to nonperturbative effects of instantons. Since at large
chemical potentials the instanton density is suppressed (see
below), the h boson still exists but acquires a finite mass.
In other words, the anomaly adds a potential energy term
Vinst�w� to the Lagrangian (6),

L � f2��≠0w�2 2 u2�≠iw�2	 2 Vinst�w� . (8)

The curvature of Vinst around w � 0 determines the mass
of the h.
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A standard symmetry argument determines periodicity
of Vinst�w�. One can formally restore the U�1�A symmetry
by accompanying (3) by a rotation of the u parameter,

u ! u 1 Nfa � u 1 2a . (9)

This symmetry must be preserved in the effective La-
grangian, so the latter is invariant under (5) and (9). This
means that the potential Vinst is a function of the variable
w 2 u, unchanged under U�1�A. Since we know that the
physics is periodic in u with period 2p , we can conclude
that, at the physical value of the theta angle u � 0, Vinst
is a periodic function of w with period 2p .

Moreover, at large m, Vinst can be found from instanton
calculations explicitly. The infrared problem that plagues
these calculations in vacuum disappears at large m: large
instantons are suppressed due to Debye screening [10,11].
As a result, most instantons have small size r � O �m21�
and the dilute instanton gas approximation becomes reli-
able. One-instanton contribution, proportional to cos�w 2

u�, dominates in Vinst. Therefore,

Vinst�w� � 2am2D2 cosw , (10)

where D is the Bardeen-Cooper-Schrieffer (BCS) gap, and
a is a dimensionless function of m which will be found
later. Here we note only that a vanishes in the limit m !
`. This is an important fact, since it implies that the mass
of the h boson,

m �

r
a
2

m

f
D � 2p

p
a D , (11)

becomes much smaller than the gap D at large m. In this
case the effective theory (8) is reliable, since meson modes
other than h have energy of order D, i.e., are much heavier
than h and decouple from the dynamics of the latter.

The Lagrangian (8) with the potential (10) is just the
sine-Gordon model, in which there exist domain-wall so-
lutions to the classical equations of motion. The profile of
the wall parallel to the xy plane is

w � 4 arctanemz�u, (12)

so the wall interpolates between w � 0 at z � 2` and
w � 2p at z � `. The tension of the domain wall is

s � 8
p

2a ufmD . (13)

A good analog of this domain wall is the N � 1 axion
domain wall, which also interpolates between the same
vacuum.

Decay of the domain wall.— It is important to under-
stand the mechanism of the decay of the wall. It has noth-
ing to do with the decay of h meson quanta, which are due
to h coupling to photons, ungapped quarks, or the gluons
of the unbroken SU�2�c subgroup. The domain wall is al-
ready a local minimum of the energy, and the decay of
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its excitations means only that the fluctuations around this
minimum, corresponding to deformations of the wall, are
damped.

The domain wall is not stable because the same ground
state is on both of its sides: w � 0 and w � 2p are
equivalent. The instability is due to higher energy meson
modes integrated out and not present in the Lagrangian (8).
One can visualize the effect of these modes by considering
an effective potential which depends on the magnitude jSj
as well as on the phase w of the order parameter S. This
potential has the shape of a Mexican hat, slightly tilted by
an angle proportional to a. A similar picture is discussed
in Ref. [3], except that the tilt of the hat is very small in
our case. The domain wall is a configuration that, as a
function of the coordinate perpendicular to the wall, starts
from the global minimum, goes along the valley, and re-
turns to the starting point. One can continuously deform
this configuration into a trivial constant one by pulling the
looplike trajectory over the top of the hat.

As in the case of the axion wall [2,12], this deformation
has to be done in a finite area of the wall first, thus creating
a hole. If this hole exceeds the critical size, it will expand,
destroying the wall. On the rim of the hole the magnitude
of jSj vanishes. The field configuration around the rim is
a vortex: on a closed path around the rim, w changes by
2p . The decay of the wall is a quantum tunneling process
in which a hole bounded by a closed circular vortex line is
nucleated. The semiclassical probability of this process is

G � exp

µ
2

16p

3
n3

us2

∂
, (14)

where n is the tension of the vortex line in the limit of
massless boson, m � 0. The factor 1�u in the exponent
of Eq. (14) is due to the fact that u plays the role of light
speed for the effective dynamics of the Goldstone boson
[see Eq. (6)].

To find G we still need to compute the vortex tension n.
Since the vortex is a global string, its tension is logarith-
mically divergent,
n � 2pu2f2 ln
R

Rcore
� 2pu2f2 ln�RD� , (15)

where R is a long-distance cutoff to be specified later, and
Rcore is the size of the core of the vortex line, which is the
short-distance cutoff. Rcore � 1�D since D is the momen-
tum scale at which the effective Lagrangian description
breaks down. We are helped by the fact that the vortex
tension is dominated by the region outside the core, so
the effective Lagrangian (6) is sufficient for computing n

to the logarithmic accuracy. By using Eqs. (13) and (15),
and taking R to be the thickness of the wall, we find the
decay rate to be

G � exp

µ
2

p4

3
u3

a
f4

m2D2 ln3 1
p

a

∂
. (16)

Since f � m ¿ D, and a decreases with increasing m,
the decay rate is exponentially suppressed at high m. Thus,
we have shown that (i) domain walls exist in the limit of
large chemical potentials, and (ii) they are metastable with
parametrically long lifetime. These conclusions are valid
in the regime of very large chemical potentials m, where
our calculations are under control.

Calculation of the potential.—What happens at smaller
m? The most interesting possibility is that the walls per-
sist down to m � 0 as advocated in Ref. [3] using large-Nc

arguments. Another possibility is that, as the description
based on the Lagrangian (8) breaks down, the walls dis-
appear. This happens when the mass of the h excitation
becomes comparable to 2D, the typical energy scale for
higher mesons [13]. From Eq. (11), one derives the fol-
lowing condition when our effective Lagrangian descrip-
tion is under control:

a�m� & 1�p2. (17)

We shall now evaluate the function a�m�.
To compute Vinst�w�, we start from the instanton-

induced effective four-fermion interaction [6,14,15],
Linst �
Z

drn0�r�
µ

4
3

p2r3

∂2Ω
�ūRuL� �d̄RdL� 1

3
32

∑
�ūRlauL� �d̄RladL�

2
3
4

�ūRsmnlauL� �d̄RsmnladL�
∏æ

1 H.c. (18)
By taking the average of Eq. (18) over the superconducting
state (1), one finds Vinst, and confirms that it is proportional
to cosw as in Eq. (10). In the ground state,

jXj� jY j �
1
2

Z d4p
�2p�4

D�p0�
p2

0 1 �jpj 2 m�2 1 D2�p0�
,

(19)

where D�p0� is the momentum-dependent BCS gap. Using
the perturbative result [16],
D�p0� � D cos

µ
g

3
p

2p
ln

p0

D

∂
, D & p0 & m ,

(20)

we find

jXj �
3

2
p

2 p

m2D

g
. (21)

Averaging Eq. (18) in the superconducting background,
we find, after some calculations,
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Vinst�w� � 2
Z

dr n0�r�
µ

4
3

p2r3

∂2

12jXj2 cosw .

(22)

Using the standard formula for the instanton density at
finite chemical potential [11,15]

n0�r� � CN

µ
8p2

g2

∂2Nc

r25 exp

µ
2

8p2

g2�r�

∂
e2Nfm2r2

(23)

with

CN �
0.466e21.679Nc 1.34Nf

�Nc 2 1�! �Nc 2 2�!
, (24)

we arrive at the final result

a � 5 3 104

µ
ln

m

LQCD

∂7µ
LQCD

m

∂29�3

. (25)

Thus a ! 0 when m ! `, so at sufficiently large m the
criterion (17) is satisfied. However, due to the large nu-
merical constant in Eq. (25), the critical m is quite high:
mcrit � 6LQCD � 1 GeV. This result should be taken
with some care due to the uncertainty in the criterion (17).
However, since a depends quite sensitively on m, it is rea-
sonable to expect that our estimate is not far from the true
value.

In the estimate above we neglected the contribution from
large instantons, which arise from the unbroken SU�2�c

sector of the theory. This sector is governed by a pure
Yang-Mills theory with the confinement scale L

0
QCD �

D exp�2const ? m��gD�	 [17]. The nonperturbative con-
tribution of large SU�2�c instantons is of order �L0

QCD�4.
Since L

0
QCD is exponentially small, this contribution is

negligible compared to that from small SU�3�c instantons.
Inclusion of quark masses does not change the domain

walls in a substantial way. The mass contribution to the
potential has been found in Ref. [9],

Vmass � 2bmumdD2 cosw , (26)

where b � 1. Equation (26) has the same w dependence
as Vinst, therefore, in all previous formulas one should
replace a by a 1 bmumd�m2.

Discussion.— It would be interesting to investigate pos-
sible astrophysical consequences of the high-density QCD
walls. In particular, one would like to know if such walls
can be created inside neutron stars. To describe the mo-
tion of the wall, one may need more than just the effective
Lagrangian (8): the coupling of h to ungapped quarks and
SU�2�c gluons could be important. The moving wall may
radiate quark-hole pairs, gluons, or photons, slowing down
the collapse of a closed domain-wall surface.

It is possible to generalize our results to the color-flavor-
locking state of Nf � 3 QCD [18]. The U�1�A symmetry
is also spontaneously broken in this case. The role of the
h boson is played by the h0 meson, which is also light
at high densities [19]. The instanton-induced h0 potential
has a form similar to (10) [20]:

Vinst�w� � 2a0 ? �ms�m�m2D2 cosw , (27)
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where the evaluation of dimensionless function a0 is very
much the same as our calculation of a and amounts to
inserting the extra factor msr into (22). Thus one expects
the domain walls to exist and to be metastable at large m.
Because of the mixing between the neutral mesons [19],
the p0 and h fields are also nontrivial on the wall. The
domain walls also exist in QCD with large isospin density
[21]. This case is interesting, since it can be studied by a
Monte Carlo lattice simulation.
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