
VOLUME 86, NUMBER 18 P H Y S I C A L R E V I E W L E T T E R S 30 APRIL 2001

3942
Noise-Activated Escape from a Sloshing Potential Well
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We treat the noise-activated escape from a one-dimensional potential well of an overdamped particle,
to which a periodic force of fixed frequency is applied. Near the well top, the relevant length scales and
the boundary layer structure are determined. We show how behavior near the well top generalizes the
behavior determined by Kramers, in the case without forcing. Our analysis includes the case when the
forcing does not die away in the weak-noise limit. We discuss the relevance of scaling regimes, defined
by the relative strengths of the forcing and the noise, to recent optical trap experiments.
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The phenomenon of weak white noise inducing es-
cape from a one-dimensional potential well was studied
by Kramers [1]. If e denotes the noise strength (e.g.,
e ~ kBT in thermal systems) and DE is the well depth,
then the escape rate l falls off like exp�2DE�e� as
e ! 0. The case when the trapped particle is overdamped
is easiest to analyze. If, after each escape, it is reinjected
at the bottom of the well, and a steady state has been set
up, then in the interior of the well its position will have
a Maxwell-Boltzmann distribution. Kramers showed that
this distribution must be modified near the well top, by
being multiplied by a “boundary layer function.” From
the modified distribution, he worked out the weak-noise
limit of the escape rate, including its all-important pre-
exponential factor, by computing the outgoing flux.

Kramers’ formula and its multidimensional generaliza-
tion have been extended in many ways [2,3]. But a full
analysis of escape driven by weak noise, in periodically
modulated systems, has not yet been performed. Such an
analysis would shed light on the Kramers limit of stochas-
tic resonance. It would also clarify the effects of barrier
modulation on phase-transition phenomena.

It is now possible to construct a physical system (a meso-
scopic dielectric particle that moves, in an overdamped
way, within a dual optical trap [4]) that provides a clean
experimental test of the three-dimensional Kramers for-
mula. The rate at which thermal noise induces escape
agrees well with the predictions of the formula. Adding
an external force, of fixed period tF , would yield a peri-
odically modulated system [5], of the sort that has not yet
been fully analyzed. A complete treatment of the escape
of an overdamped particle from a “sloshing potential well”
of this sort would surely be desirable.

Smelyanskiy et al. treated this phenomenon perturba-
tively, in one dimension [6]. They derived a Kramers
prefactor incorporating f, the periodic forcing strength. It
applies if the ratio f�e is set to a constant as e ! 0. That
is, the forcing is taken to die away in the weak-noise limit.
Lehmann et al. [7] treated nonperturbatively the case when
f is independent of e, using path integral techniques,
and worked out a numerical scheme for computing the
0031-9007�01�86(18)�3942(4)$15.00
f-dependent prefactor. They also examined the “in-
stantaneous escape rate,” which in the steady state is a
tF-periodic function of time. In a simulation of a special
case (a well with a perfectly harmonic top), they noted
that in the weak-noise limit, the instantaneous escape rate
maximum cycles slowly around the interval �0, tF�.

In this Letter, we go beyond [6] and [7]. By treating
the case f ~ ea , where a is an arbitrary non-negative
power, we determine the relation between their respective
scaling regimes. In the weak-noise, weak-forcing limit,
there are three physically important length scales near the
oscillating well top, of sizes proportional to e1�2, f, and
f1�2. Crossover behavior will result if f ~ e1�2, and the
case f ~ e can itself be viewed as a crossover regime.

When f is e independent, we use facts on noise-induced
transport through unstable limit cycles to illuminate the
logarithmically slow “cycling” phenomenon [8]. We com-
pute the instantaneous escape rate as the flux over the os-
cillating well top, which is an unstable limit cycle. This
differs from [6], where the flux through a remote obser-
vation point is used. At any t in �0, tF�, our normalized
escape rate oscillates periodically in lne as e ! 0. We
compute the period, and give a physical explanation.

More importantly, we place the case of e-independent
periodic forcing firmly in Kramers’ framework, by deter-
mining how the Maxwell-Boltzmann distribution is modi-
fied, in the boundary layer of width O �e1�2� near the
oscillating well top. As f ! 0, it approaches the modi-
fied distribution of Kramers [1]. The case when f ~ e in
the weak-noise limit is intermediate between the case of
e-independent forcing and the case of zero forcing, and its
boundary layer structure is intermediate also.

Scaling regimes.— Initially, we work in terms of di-
mensional quantities. The Langevin equation for a driven
Brownian particle in a potential well U � U�x� is

mẍ 1 gm �x � 2U 0�x� 1 Fn�t� 1
p

2mgkBT h�t� .

(1)

Here g is the damping, F is a dimensional measure of
the driving, n is a dimensionless periodic function of unit
© 2001 The American Physical Society
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amplitude, and h is a standard white noise. In the over-
damped (large-g) limit, the inertial term can be dropped,
leaving

�x � 2V 0�x� 1 fn�t� 1
p

e h�t� . (2)

Here V � U�gm, f � F�gm, and e � 2kBT�gm.
Kramers’ formula for the f � 0 escape rate is

l �
vsvu

2pg
exp�2DU�kBT �

�

p
V 00�xs� jV 00�xu�j

2p
exp�2DE�e� , (3)

where vs �
p
U 00�xs��m and vu �

p
jU 00�xu�j�m are the

oscillation frequencies about the bottom xs and top xu
of the well, and DE � 2DV . Equation (3) follows from
Kramers’ modification of the steady-state Maxwell-
Boltzmann weighting exp�2U�x��kBT �, i.e.,
exp�22V �x��e�. If n denotes the inward offset from xu,
his modifying factor is erfc�2n�

p
e�jV 00�xu�j �.

If f fi 0, there are two regimes, depending on the size
of f as e ! 0. Since �e� � �DE� � L2�t and � f� � L�t,
where L denotes length and t denotes time, f will be
“large” in the Kramers limit if it is large compared to a
quantity with dimensions L�t, namely,

p
jV 00�xu�je.

In physical terms, there are two regimes because there
are two length scales at the well top. The first is the
length scale in Kramers’ modification. There is a layer of
width �

p
2kBT�jU 00�xu�j, i.e.,

p
e�jV 00�xu�j, within which

“physics occurs.” This O �e1�2� quantity is the diffusion
length: the distance to within which the particle must ap-
proach, to acquire a substantial chance of leaving the well.

If a periodic force is applied, a second length scale be-
comes important. The well top will oscillate periodically
around its unperturbed location xu by an amount roughly
equal to F�jU 00�xu�j. If this length scale is substantially
larger than the first, escape dynamics should be strongly af-
fected. The crossover occurs when F �

p
2jU 00�xu�jkBT ,

i.e., when F �
p

2mv2
ukBT . In normalized units, this cri-

terion is f �
p
jV 00�xu�je.

So if f ~ ea in the Kramers limit �e ! 0�, a . 1�2
and 0 # a , 1�2 are regimes of weak and strong forcing,
respectively. The two regimes should be kept in mind when
conducting experiments on escape in periodically driven
systems. In the Kramers limit, only when the forcing is
much weaker than

p
2mv2

ukBT is a simple perturbative
modification of Kramers’ formula likely to apply.

An illustration would be the room-temperature dual op-
tical trap experiment of McCann et al. [4], in which m �
3 3 10216 kg and vu � �7 6 2� 3 104 sec21. The cor-
responding force magnitude

p
2mv2

ukBT is approximately
10213 Newtons. Any repetition of their experiment, with
the addition of periodic driving, should take this dividing
line into account.

Preliminaries.—Our analysis of the a � 0 case, in
which f is independent of e, uses optimal trajectories.
The e ! 0 limit is governed by the action functional
W �t � x�t�� �
1
2

Z
j �x 1 V 0�x� 2 fn�t�j2 dt . (4)

Suppose that f � 0. Then the most probable trajectory
from xs to any specified point x0 is the one that minimizes
W �t � x�t��. The minimum is over all trajectories from
xs to x0, and all transit times (finite and infinite). There
is a single minimizer t � x��t� to each side of xs, which
we term an optimal trajectory. The value W �t � x��t��,
which depends on x0 and may be denoted W�x0�, is the rate
at which fluctuations to x0 are exponentially suppressed as
e ! 0. In the steady state, the probability density r of the
particle will have the limiting form

r�x� � K�x� exp�2W �x��e�, e ! 0 . (5)

The prefactor K�x� must be computed by other means.
Any such f � 0 optimal trajectory must satisfy

�x � 1V 0�x�, i.e., be a time-reversed relaxational trajec-
tory. This is due to detailed balance [9]. The trajectory
from xs to xu is instantonlike: it emerges from xs at
t � 2` and approaches xu as t ! 1`. Within the well,
W�x� equals 2�V �x� 2 V �xs��, so DE � W�xu� equals
2�V �xu� 2 V �xs��. Also, K is independent of x.

If f � 0, the model defined by the Langevin equa-
tion (2) is invariant under time translations. So the optimal
trajectory from xs to xu is not unique. If x � x��t� is a ref-
erence optimal trajectory, consider the family

t � x
�f�
� �t� � x�

µ
t 2

f

2p
tF

∂
, (6)

where the phase shift f satisfies 0 # f , 2p, and tF
is the period of the forcing function n � n�t�. In the
Kramers limit of any model with f nonzero but small,
the most probable escape trajectory should resemble some
trajectory of the form (6). That is, some fm will be singled
out as maximizing the chance of a particle being “sloshed
out.” A study of the f ! 0 limit should yield fm.

This was the approach of [6]. Suppose that f fi 0.
If DE is computed by applying (4) to the unperturbed
� f � 0� optimal trajectory x � x

�f�
� �t�, the first-order

[i.e., O � f�] correction to DE will be fw1�f�, where

w1�f� � 2
Z `

2`

�x
�f�
� �t�n�t� dt . (7)

It is reasonable to average the Arrhenius factor
exp�2DE�e� in Kramers’ formula over f, from 0
to 2p. If 	?
f denotes this averaging, then the escape rate
will be modified by the driving, to leading order, by a
factor 	e2fw1�f��e
f. If a � 1, i.e., f � f1e for some f1,
then Kramers’ formula (3) will be altered to

l � 	e2f1w1�f�
f

p
V 00�xs� jV 00�xu�j

2p
exp�2DE�e� . (8)

Clearly, fm should be the phase that minimizes w1�f�.
Equation (8) is essentially the formula of Smelyanskiy

et al. [6]. But our derivation makes it clear that their per-
turbative approach requires that f ! 0 rapidly as e ! 0,
3943
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(16)
i.e., that a be sufficiently large. Estimating the minimum
of W �?� by applying it to unperturbed optimal trajectories
yields a correction to DE which is valid only to O � f1�.

If f is independent of e, then, by Laplace’s method,

	e2fw1�f��e
f �
1q

2pw00
1 �fm�f

e1�2e2fw1�fm��e (9)

as e ! 0. This would seemingly suggest that

l �
p
V 00�xs� jV 00�xu�j

2p

1q
2pw00

1 �fm�f
e1�2 exp�2DE�e�

(10)

is the a � 0 Kramers formula, with DE shifted by
fw1�fm� to leading order. But the prefactor in (10) is
correct only in the small-f limit. If f ~ ea , the O � f1�
correction to DE will be of size O �ea�. If a � 1, it will
alter the prefactor, as in (8). But when a # 1�2, O � f2�
terms will also affect the prefactor. The most difficult
case is a � 0, where terms of all orders in f will affect
the prefactor. A nonperturbative treatment is called for.

Analysis.—We first remove explicit time dependence,
when f fi 0 and tF are fixed, by replacing (2) with

�x � 2V 0�x� 1 fn� y� 1
p

e h�t� ,

�y � 1 .
(11)

Here 0 # y , tF , and y is periodic: y � tF is identified
with y � 0. The state space with coordinates X � �x, y�
is effectively a cylinder. On this cylinder, the oscillating
well bottom x � x̃

� f�
s �t� is a stable limit cycle, and the

oscillating well top x � x̃
� f�
u �t� is an unstable limit cycle.

To stress f dependence, we denote them X
� f�
s and X

� f�
u .

To study escape through X
� f�
u as e ! 0, we can use

the results of Graham and Tél [10,11]. The e ! 0 limit
is governed by a helical, instantonlike optimal trajectory
X � X

� f�
� �t�, which spirals out of X

� f�
s and into X

� f�
u . It

is the most probable escape path in the steady state. DE

equals W �t � X
� f�
� �t��, which must be computed

numerically. X
� f�
� would first be computed nonperturba-

tively, by integrating Euler-Lagrange equations.
As X

� f�
� nears the oscillating well top, it increasingly

resembles a time-reversed relaxational trajectory. So, at
any specified y, the lth winding of X

� f�
� , as it spirals into

X
� f�
u , has an inward offset n that shrinks geometrically, like

ac2l , as l ! `. Here a � a� y� and c are f dependent,
and c � exp�

H
jV 00�x̃� f�

u �t��jdt�.
The form (5) for the steady-state probability density gen-

eralizes to K�X� exp�2W�X��e�. To compute W and K
at any specified X0, an optimal trajectory ending at X0 is
needed; in general, one different from X

� f�
� . An asymp-

totic analysis of the Smoluchowski equation for the proba-
bility density [9,12] shows that W satisfies the Hamilton-
Jacobi equation H�x, =W� � 0, where the Hamiltonian
H�x, p� equals p ? D ? p�2 1 u�x� ? p. Also, along any
trajectory, the density prefactor K satisfies
3944
�K � 2�= ? u 1 Dij≠i≠jW�2�K . (12)

Here u�x, y� � �2V 0�x� 1 fn� y�, 1� is the drift on the
cylinder, and �Dij� � diag�1, 0� is the diffusion tensor. It
follows from the Hamilton-Jacobi equation that the Hes-
sian �≠i≠jW� obeys a Riccati equation along any optimal
trajectory [12,13]. This gives a numerical scheme for com-
puting K�X0�, starting with an O �1� value for K on X

� f�
s .

In principle, the steady-state escape rate l can be com-
puted by Kramers’ method [1]: evaluating the probability
flux through X

� f�
u . But this is intricate, due to a subtle

problem discovered by Graham and Tél [10,11]. Optimal
trajectories that are perturbations of the escape trajectory
t � X

� f�
� �t� intersect one another wildly near X

� f�
u . This is

because t � X
� f�
� �t� is a delicate object: a “saddle connec-

tion” in the Hamiltonian dynamics sense. In consequence,
any X0 near X

� f�
u is reached by an infinite discrete set of

optimal trajectories, indexed by l, the number of times a
trajectory winds around the cylinder before reaching X0.
The steady-state density has limiting behavior [12]

r�X� �
X
l

K �l��X� exp�2W �l��X��e�, e ! 0 ,

(13)

since W and K are infinite valued, not single valued.
It is known [10–12] that, at any fixed y, any W �l� is not

quadratic but linear in the offset n from X
� f�
u :

W �l��n� � DE 2 jW,nnj �ac2ln 2 �ac2l�2�2� . (14)

W,nn , 0 is what, in the absence of multivaluedness, the
Hessian matrix element ≠2W�≠n2 would equal at n � 0.
Along X

� f�
u , it obeys the scalar Riccati equation

≠W,nn�≠y � 2W2
,nn 1 2V 00�x̃� f�

u � y��W,nn . (15)

W,nn � W,nn� y� is the tF-periodic solution of this equa-
tion, which is easy to solve numerically. At any y, W,nn
equals 2V 00�xu� to leading order in f. If V is anharmonic
at the well top, deviations from this value will occur.

It is also known [12] that the second term on the right-
hand side of (12) tends rapidly to zero along X

� f�
� , as it

spirals into X
� f�
u . So, with each turn, K is multiplied by

exp�2
H

�= ? u� dt�, i.e., by exp�
H
V 00�x̃� f�

u �t�� dt�. This
factor equals c21. So K �l� � Ac2l for some A � A� y�.
Since n � ac2l , it follows that, along X

� f�
� , K � k1n

as n ! 0. Here k1 � A�a, like W,nn, is a tF-periodic
function of y, which quantifies the linear falloff of K .

On �0, tF�, k1 turns out to be proportional to W,nn [14].

It can be found by integrating (12) along X
� f�
� , as it spirals

into X
� f�
u . It is the t ! ` limit of the quotient K�n.

Nonconstancy, if any, is due to anharmonicity of V .
Substituting (14) and K �l� � k1ac2l into (13) yields

e2DE�e
X̀
l�2`

k1ac
2l exp�jW,nnj �ac2ln 2 �ac2l�2�2��e�
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as the e ! 0 steady-state probability density r, at an in-
ward offset n from the oscillating well top. Summing from
2` to ` is acceptable since the relative errors it introduces
are exponentially small, and ignorable. The dependence
here on t, i.e., on y, is due to W,nn, k1, and a.

Discussion.—The cycling phenomenon, and much else,
follows from the infinite sum (16). To determine its be-
havior on the O �e1�2� diffusive length scale near the os-
cillating well top, set n � Ne1�2 with N fixed, and also
multiply by e21�2. (As in the case of no periodic driving,
a steady-state density r̃ that is normalized to total proba-
bility 1 within the well must include an e21�2 factor.) The
resulting expression is invariant under e � c22e. So

r̃�n � Ne1�2, t� � h� f�
e �N , t� exp�2DE�e�, e ! 0 ,

(17)

where the quantity h
� f�
e �N , t�, for any N and any t in

�0, tF�, is periodic in lne with period 2 lnc.
In the steady state, the instantaneous escape rate

l�t� through the oscillating well top, which equals
�e�2� �≠�≠n�r̃jn�0, has limiting behavior

l�t� � �1�2�e1�2h� f�0
e �0, t� exp�2DE�e�, e ! 0 .

(18)

Thus at any t in �0, tF�, the instantaneous escape rate,
divided by e1�2 exp�2DE�e�, ultimately oscillates in lne

with period 2 lnc, i.e., with period 2�
H
jV 00�x̃�f�

u �t��j dt�.
Lehmann et al. [7] noted that, on �0, tF�, the peak of

the function l�?� may shift when e is decreased. Our pre-
ceding result indicates this phenomenon is widespread. Its
cause is physical. As e ! 0, the most probable trajec-

tory taken by an escaping particle is the helix t � X
� f�
� �t�,

along which it moves in a ballistic, noise-driven way. How-
ever, once it gets within an O �e1�2� distance of the oscil-
lating well top, it moves diffusively instead. It is easily
checked that such a changeover must take place at a lo-
cation that cycles slowly around �0, tF�, as e ! 0. If
e � c22e, the changeover returns to its original location.

If the well top is perfectly harmonic, so that W,nn and
k1 do not depend on t, and also the bottom, it is straight-
forward to integrate l�t� over �0, tF�. We find

l �
k1

p
V 00�xs�p

2p tF jV 00�xu�j
e1�2 exp�2DE�e� . (19)

It is useful to compare (19) with the perturbative formula
(10). They are consistent if k1 diverges like f21�2 as
f ! 0. An f21�2 divergence was seen in this special
case by Lehmann et al. [7], and it occurs widely [14]. It
has major consequences. k1 is the normal derivative of
the prefactor K . But K is O �1� on X

� f�
s , and is well

behaved in the well interior as f ! 0. So there must
be a layer of width O � f1�2� near the top of the well, in
which K declines linearly to zero. This has been seen
numerically [14].
We can now compare the steady-state probability den-
sity (17), which is valid on the O �e1�2� length scale near
the oscillating well top, to the density when f � 0. The

analog of h
� f�
e �N , t�, when f � 0, is (up to a constant)

erfc�2
q
jV 00�xu�jN� 3 e21�2 exp�jV 00�xu�jN2� . (20)

The erfc is Kramers’ boundary function [1], and the expo-
nential is from the Maxwell-Boltzmann distribution.

How can h
� f�
e �N , t�, which is defined by an infinite sum,

degenerate into such a classical (and t-independent) form
when f ! 0? The origin of this “weak-driving disconti-
nuity” is clear: the f ! 0 limit passes through an interme-
diate scaling regime, namely, a � 1, where the sum (16)
is not valid. Light is thrown on this by an integral repre-
sentation for r̃�n, t� of Smelyanskiy et al. [6,15], which is
valid if a � 1. In our notation, it is (up to a constant)

e21e22DV�e
Z `

0
e�np2p2�4jV 00�xu�j��ee2� f�e�w1�w� dp , (21)

w � w�p, t� � fm 1 2p log�p�2jV 00�xu�ja�t��� logc.
The expression (21) is a Maslov-WKB form [16], which
we study further elsewhere [14]. It is easy to see that (21)
provides an interpolation, across the a � 1 regime, from
the small-f portion of the a � 0 regime to the f � 0
case treated by Kramers. When f is nonzero and small,
but fixed as e ! 0, applying Laplace’s method to (21)
yields an infinite sum resembling our sum (16). And when
f � 0, evaluating (21) yields Kramers’ erfc factor.
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