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Spatially Selective Bragg Scattering: A Signature for Vortices
in Bose-Einstein Condensates
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We demonstrate that Bragg scattering from a condensate can be sensitive to the spatial phase distri-
bution of the initial state. This allows preferential scattering from a selected spatial region, and provides
a robust signature for a vortex state. We develop an analytic model which accurately describes this
phenomenon, and we give quantitative predictions for current experimental conditions.
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Bragg scattering of matter waves from laser beams is a
well known phenomenon in atom optics (e.g., [1,2]) and
has proved to be an effective tool for manipulating and
analyzing Bose condensates. In that context it has been
used in experiments to coherently split a condensate [3,4],
and to perform momentum and phonon spectroscopy [5,6].
Theoretical calculations show it may be used to extract
quasiparticle amplitudes from weakly excited condensates
[7]. Two groups have constructed Mach-Zehnder type in-
terferometers [8] using sequences of Bragg pulses to probe
condensate phase [9–11]. In all of those cases the Bragg
scattering process is most easily understood in terms of a
momentum space process in which the Bragg fields trans-
fer momentum h̄q to each atom. In a beam splitter, half the
initial amplitude is translated in momentum space by h̄q,
while in momentum spectroscopy a selected narrow group
of momentum components is translated by h̄q. The spatial
structure of the initial condensate plays no particular role
in the Bragg process for those cases.

A major interest in condensates, however, is that their
macroscopic wave functions may be engineered into spe-
cific spatial structures. For example, the vortex state,
which has recently been observed by two groups [12,13],
has a phase circulation of 2p about a vortex core. The most
direct means for observing such a phase distribution is by
interference with a separate well characterized matter field
(e.g., [12,14]), but this may not always be experimentally
convenient. In this paper we show that under appropriate
conditions Bragg scattering is sensitive to the spatial phase
distribution of the initial condensate and therefore allows
preferential scattering from a selected spatial region. In the
case of a vortex, this gives a distinctive signature which
we illustrate in Fig. 1. There the density distribution of a
trapped condensate vortex state is shown following appli-
cation of Bragg pulse chosen according to criteria devel-
oped later in this paper. In Fig. 1(a) the streaming output
(the Bragg scattered component) emerges from only one
side of the initial condensate, and gives an asymmetric den-
sity pattern which should be detectable with current ex-
perimental technology. In Fig. 1(b) where the frequency
difference of the laser fields has been changed, the stream-
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ing output field has a density node that is an order of mag-
nitude wider than the vortex core itself (i.e., the healing
length in the center of the original condensate). In the
following we develop a treatment of such spatially selec-
tive Bragg scattering which explains the behavior in terms
of the underlying spatial phase sensitive mechanism, and
we give analytic solutions appropriate to 3D condensates.
We treat the process of Bragg scattering from a conden-
sate using a previously developed formalism [15], in which
the condensate mean field C (in an interaction picture)
evolves in a far detuned light-field grating formed by two

FIG. 1. Spatial density of a 2D vortex state at time t � 0.6t0
after excitation by a Bragg pulse with frequency detuning
(a) v � 216vT and (b) v � 203vT (vT is the harmonic
trapping frequency). The trap remains on at all times. Other pa-
rameters are V � 0.2vT , q � 14�x0, and w � 500w0. Units:
time t0 � 1�vT ; distance x0 �

p
h̄�2mvT ; collisional interac-

tion strength w0 � h̄vT x3
0 . The dashed line denotes a suitable

position for measuring the output beam profile (see text).
© 2001 The American Physical Society
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plane-wave laser beams, according to the equation

ih̄
≠

≠t
C �

∑
2

h̄2

2m
=2 1 VT �r� 1 wjCj2

∏
C

1 h̄V �t� cos�q ? r 2 vt�C . (1)

Here VT �r� is the trap potential (assumed to be harmonic in
the examples of this paper) and w �� 4Np h̄2a�m� is the
usual nonlinearity parameter of the Gross-Pitaevskii equa-
tion. The final term in Eq. (1) describes the interaction
with the Bragg grating: v and h̄q are the two-photon de-
tuning and recoil momentum (i.e., difference in frequency
and photon momentum of the laser beams), respectively,
and V �t� � jV�t�j2�2D is twice the ac-stark shift at the in-
tensity peaks. For the scattering to be in the Bragg regime
the pulse length Tp of the lasers must be long enough that
the Bragg resonance is resolved (i.e., Tp ¿ v21

q , where
vq � h̄q2�2m is the recoil frequency). In order to ob-
tain spatially selective Bragg scattering it is also neces-
sary that the average value of V is sufficiently small that
the total amount of condensate scattered in time Tp is small
compared to the unscattered amount. In addition, we as-
sume the Bragg pulse length (and the time of observation)
is shorter than a quarter trap period, to avoid the trap forces
significantly altering the momentum of the scattered beam.

Equation (1) can be directly numerically simulated, as,
for example, we have shown in the two-dimensional case
of Fig. 1. We have also obtained an analytic solution,
which provides detailed insight into the underlying physics
and enables us to provide quantitative calculations over a
wide range of parameters in the three-dimensional case.
For the analytic solution, we assume that the recoil mo-
mentum h̄q of the Bragg grating is much larger than the
momentum width of the initial condensate, sp (which is
centered about zero momentum), and also assume that the
detuning v is close to the Bragg resonance. This means
the scattered wave packet is well separated in momentum
space from the initial state and a slowly varying envelope
approximation can be made [16] so that we write

C�r, t� � c0�r, t� 1 c1�r, t� ei�q?r2vt�. (2)

In Eq. (2) c1 is the scattered wave packet, while c0, which
we call the mother condensate, represents a condensate
with a momentum wave packet centered on zero. At t � 0,
c0 is exactly the initial condensate. Substituting Eq. (2)
into Eq. (1) and projecting into orthogonal regions of mo-
mentum space, we obtain to first order in c1 the coupled
equations

ih̄
≠

≠t
c0 �

∑
2

h̄2

2m
=2 1 VT 1 wjc0j

2

∏
c0 1

h̄V �t�
2

c1 ,

(3)

ih̄
≠

≠t
c1 �

∑
2

h̄2

2m
=2 2 h̄d 2 ih̄Q ? =

1 VT 1 2wjc0j
2

∏
c1 1

h̄V �t�
2

c0 , (4)
where Q � h̄q�m is the velocity of the scattered atoms,
d � v 2 vq, and we have neglected the rapidly oscillat-
ing term c

2
0 c

�
1 . Our interest is in the scattered state c1

which is assumed to be small, so we can neglect the scat-
tering from c1 back to c0 [i.e., V �t�c1 in Eq. (3)]. This
means that c0 then evolves according to the usual Gross-
Pitaevskii equation, and typically we choose c0 to be an
eigenstate of that equation. We can also ignore the =2

term in Eq. (4) which describes momentum diffusion
about the center of momentum q of the c1 packet, and is
small on the time scales we consider. For longer times
(Tp * 0.25 3 2p�vT ) the trapping potential causes c1

to develop large phase gradients, and then =2 cannot be
neglected. Equation (4) can now be solved to give

c1�r, t� � 2
i
2

Z
ds e2iK�r,t,s�V �s�c0���r 1 Q�s 2 t�, s��� ,

(5)

where

K�r, t, s� � �s 2 t�d 1
1
h̄

Z t

s
ds0

3 �VT ���r 1 Q�s0 2 t����
1 2wjc0���r 1 Q�s0 2 t�, s0���j2� . (6)

Equation (5) allows us to visualize the formation of the
scattered state as follows. As the scattered packet moves
across the mother condensate, the amplitude c1 at a given
point (stationary in the frame moving with velocity Q) is
built up from the sum of contributions coupled in from
successive points along the mother condensate. The contri-
bution coupled in at time s from a position r 1 Q�s 2 t�
on the mother condensate evolves to time t with the propa-
gator exp���2iK�r, t, s����. The scattered state at r and t
will be appreciable only if the contributions constructively
interfere. Writing c0�r,s� in terms of amplitude and phase
A0�r,s� exp���iS0�r, s����, then the condition for an appre-
ciable scattered state to form is that the phase Q�r, t, s� �
2K�r, t, s� 1 S0���r 1 Q�s 2 t���� be stationary. We take
c0 to be a stationary eigenstate, i.e., c0�r, s� � A0�r� 3

exp�i���S0�r� 2 m0s����, where m0 is the eigenvalue of the
mother condensate. Furthermore, we make use of the
Thomas-Fermi solution w�A0�2 � m0 1 VT , so then

K � �t 2 s� �m0 2 d�

1
w
h̄

Z t

s
ds0 �A0���r 1 Q�s0 2 t�����2. (7)

The condition for stationary phase dQ�r, t, s��ds � 0
then gives the generalized Bragg resonance condition

d �
∑

w
h̄

�A0�R��2 1 =RS0�R� ? Q
∏

R�r1Q�s2t�
. (8)

This condition is valid when q ¿ sp , T , 0.25 3

2p�vT , and jc1j ø
p

np , where np is the peak con-
densate density. The latter condition can be reduced to
the practical approximate form VTp & 2. If Q has suffi-
ciently large spatial curvature, one particular time s may
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dominate the stationary phase contribution. However, for
the cases of a ground or vortex initial state, Q varies
sufficiently slowly that most contributions from along the
line R � r 1 Q�s 2 t� on the initial condensate can be
in phase. For an initial ground state, Eq. (8) reduces in
the linear case to the usual Bragg resonance condition
d � 0, while for the nonlinear case, d � �wjc0�R�j2�h̄�,
in which the braces indicate that the precise value of the
shift is obtained by a suitable average along the path R
[17]. For a general initial state the second term in Eq. (8),
which can be interpreted as a Doppler condition, must be
included.

The full spatial solution for the scattered state contains
a great deal of information, but we can extract a useful and
compact signature by considering the steady-state density
profile of the scattered beam at the edge of the initial con-
densate. In the 2D simulation of Fig. 1, for example, the
steady-state density profile could be measured along the
dashed line. For definiteness, we shall take the case where
q is in the y direction. We define the steady-state density
profile of the scattered state to be

Dq�x, z, v� � jc1�x, y � R, z, tS�j2, (9)

where the distance R is sufficiently large that the den-
sity of the mother condensate in the plane �x, y � R, z�
is negligible (i.e., Dq � jCj2). For strongly interacting
condensates it is suitable to use R � RTF, where RTF is
the Thomas-Fermi radius (in the xy plane). tS , the time
to reach steady state, can be estimated as 2R�Q, i.e., the
time for the scattered state to traverse the mother conden-
sate. Since experiments would usually measure the density
projected along the z axis (the line of viewing), we define
the projected steady-state density profile

Dq�x, v� �
Z

dz Dq�x, z, v� , (10)

to characterize the results of the Bragg scattering.
We begin by considering the case of two spatial dimen-

sions, which contains the essence of the physics. Figure 2
shows Dq�x, v� calculated from the full 2D numerical so-
lution of Eq. (1), for cases where the initial state is (a) a
noninteracting ground state, (b) a condensate ground state,
or (c) a condensate vortex state. In Figs. 2(d)–2(f) we
provide the comparison to the analytic solutions for the
same cases, and it is apparent that agreement is very good.
We note that in the analytic solutions a Thomas-Fermi ap-
proximation is made for c0. For vortex states, the addi-
tional centrifugal potential m2��x2 1 y2� is included, and
the phase is S0�r� � mf, where f is the azimuthal angle.

The results for the noninteracting ground state
[Figs. 2(a) or 2(d)] show, as expected, that the scattered
beam is greatest (i.e., Bragg scattering is resonant) when
v � vq (i.e., d � 0). The frequency width of Dq�x, v�
can be estimated using a simple Fourier analysis on the
integral in Eq. (5), to be DD 	 Q�RTF. In Fig. 2(b)
[or 2(e)] the effects of the condensate nonlinearity ap-
pear. At the center of the scattered profile (x � 0) the
3932
FIG. 2. Steady-state Bragg scattered density profiles in 2D for
(a) noninteracting ground state [18], (b) condensate ground state
(w � 500w0), and (c) condensate vortex state (w � 500w0,
m � 21). Measurements are made at t � 0.6t0 for a Bragg
field with V � 1vT , q � 14�x0. Frames (d)– (f) give the ana-
lytic solution of Eq. (5) for the cases corresponding to (a)– (c),
respectively. Dotted lines, free particle resonant frequency
(vq � h̄q2�2m); dashed lines, 2D nonlinear shifted frequency
(vnl � vq 1 2m0�3) [17].

resonant frequency for Bragg scattering has been shifted
by 0.84m which is close to the value of �wjc0�R�j2�h̄�
averaged along the center line of the mother condensate
(� 4m0�5). The shift at the spatial edges of the scattered
beam (x � 6RTF) is less, because the mother condensate
has lower average density along the appropriate lines
R � r 1 Q�s 2 t�, and so Dq�x, v� has a crescent
shape. The frequency width DD (at x � 0) is smaller than
for the noninteracting ground state case (a), due mainly to
the increased spatial width RTF of the mother condensate.
The most significant result for this paper is Fig. 2(c),
namely, the vortex signature. At the “resonant” frequency
(indicated by the dashed line), the scattered density profile
is essentially spatially symmetric [see also Fig. 1(b)], but
at other frequencies the scattering is spatially asymmetric.
This asymmetry, which we emphasize arises from the
spatial phase asymmetry of the vortex, is robust, being
present for a wide range of frequencies. The density node
at the center of the beam (x � 0) at the resonant frequency
also arises from the phase asymmetry: as the scattered
wave packet passes over the vortex core, the contributions
from the mother condensate change phase sharply by p

and thus cancel. Our results can also be extended into
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FIG. 3. Projected steady-state Bragg scattered density profiles
from a condensate of 2 3 105 Rb87 atoms in an m � 21
central vortex in (a) oblate trap with vT � 2p 3 50 Hz,
aspect ratio l �

p
8, m0 � 31.6vT ; (b) prolate trap with vT �

2p 3 100 Hz, l � 1�10, m0 � 9.5vT . Dotted lines, free par-
ticle resonant frequency (vq � 2p 3 15 kHz); dashed lines,
3D nonlinear shifted frequency (vnl � vq 1 4m0�7). Bragg
field (V � 2p 3 50 Hz) provided by counterpropagating lasers
of approximately 780 nm.

three dimensions by using the analytic solution Eq. (5). In
Fig. 3 we present the behavior of Dq�x, v� from a vortex
condensate of 2 3 105 rubidium atoms in both oblate
and prolate traps. The features discussed in the previous
paragraphs are unchanged in three dimensions.

Although we have concentrated on the steady-state den-
sity profile, our analytic solution contains other interest-
ing results. For example, with a Bragg pulse of length
Tp ø ts, the scattered state is itself a vortex, and a se-
quence of such pulses would produce a sequence of vor-
tices streaming out from the mother condensate, until it
becomes too depleted.

In summary, we have shown that under appropriate con-
ditions Bragg scattering is sensitive to the spatial phase
dependence of the initial matter field state, and there-
fore allows preferential scattering from a selected spatial
region. We have developed an analytic model which accu-
rately describes this phenomenon and explains the under-
lying mechanisms. When applied to a vortex state, a robust
signature is obtained, for both oblate and prolate traps.
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