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The budding of multicomponent membranes is studied by computer simulations and scaling argu-
ments. The simulation algorithm combines dynamic triangulation with Kawasaki exchange dynamics.
The budding process exhibits three distinct time regimes: (i) formation and growth of intramembrane do-
mains; (ii) formation of many buds; and (iii) coalescence of small buds into larger ones. The coalescence
regime (iii) is characterized by scaling laws which describe the long-time behavior. Thus, the number of
buds, Ny, decays as Nyyq ~ 1/t% for large time ¢+ with § = 1/2 and § = 2/3 in the absence and the

presence of hydrodynamic interactions, respectively.
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Budding is an amazing shape transformation in which a
large membrane segment expels smaller, nearly spherical
buds. For large vesicles, such shape transformations can
be directly observed in the optical microscope; see, e.g.,
Refs. [1-4]. In order to transform a flat membrane seg-
ment into a nearly spherical bud, the membrane molecules
must be able to flow within the membrane surface. There-
fore, budding processes, which can be observed on the mi-
crometer scale, provide direct evidence for the fluidity of
the membrane on the nanometer scale.

In this article, we consider multicomponent membranes
which form intramembrane domains and undergo domain-
induced budding [5]. The equilibrium properties of such
membranes have been previously studied by a variety of
theoretical methods [5—9]. Here, we will be concerned
with the dynamics of such membranes. We use a new
simulation algorithm which shows that the corresponding
time evolution involves three distinct time regimes: (i) for-
mation and growth of intramembrane domains; (ii) mul-
tiple bud formation; and (iii) coalescence of small buds
into larger ones. Time regime (i) corresponds to the usual
phase separation dynamics in two-dimensional systems as
previously studied, e.g., for monolayers at the air-water in-
terface [10]. The time regimes (ii) and (iii) are new and
reflect the ability of tensionless membranes to escape into
the third dimension.

There have been a few previous simulation studies of
the dynamics of multicomponent membranes [11,12]. The
membranes considered in these previous studies were,
however, severely constrained. First, Taniguchi [11] used
a network with fixed triangulation to describe the shape
of the membrane, together with local area conservation
and a diffusive dynamics for the membrane components.
His study is limited to small deformations of the initially
spherical vesicle shape, and thus restricted to time regime
(i). In contrast, Kumar and Rao [12] used a dynamical tri-
angulation as appropriate for fluid membranes of arbitrary
shape [13], but their membranes were bounded by a fixed
frame which exerts a lateral tension onto the membranes.
This tension increases with the number of buds and, thus,
truncates the budding process.
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In our simulations, the membranes are modeled as dis-
cretized surfaces which consist of two different types of
triangles or patches, say a and b, corresponding to the
two membrane components. In previous simulation work
[11,12], the two components were placed on the vertices
of the discretized surface which has the disadvantage that
the number of nearest neighbors for the composition vari-
ables depends on the membrane shape. In contrast, our
approach ensures that the number of nearest neighbors is
always three.

The membrane configurations are changed using three
types of Monte Carlo (MC) moves: (i) The vertices are
displaced to allow changes of the membrane shape; (ii) the
edges of the surface are flipped to ensure the fluidity within
the membrane (dynamic triangulation); and (iii) the a and
b patches are locally exchanged to implement the diffusive
motion of the membrane components (Kawasaki exchange
dynamics).

In order to simulate a large number of buds, we did not
incorporate the volume constraint which applies to large,
osmotically balanced lipid vesicles. This constraint acts to
reduce the maximal number of buds [14], but will not alter
the presence and the character of the three time regimes
described here.

We focused on the strong segregation regime in which
the phase separation process leads to « and 8 domains
consisting of several a and b patches, respectively. Our
algorithm implies that such a domain follows a Rouse-type
dynamics with a friction coefficient which is proportional
to the number of patches contained in the domain [15].
For real membranes, one may have long-ranged hydrody-
namic interactions which are not included in our simula-
tions. However, using a simple scaling argument, we can
predict the effect of these hydrodynamic interactions on the
scaling laws in the coalescence regime (iii) as discussed at
the end of this article.

Two examples for the budding phenomena observed in
the simulations are shown in Figs. 1 and 2. Each figure il-
lustrates the time evolution of a single vesicle; the a and b
patches are white and gray, respectively. Even though the
two shape sequences in Figs. 1 and 2 look rather different,

© 2001 The American Physical Society 3911



VOLUME 86, NUMBER 17

PHYSICAL REVIEW LETTERS

23 APrIL 2001

ol N
) D:E:é

t = 2000 t = 4000
t=10% t=9x10%

FIG. 1. Shape sequence for a vesicle membrane which consists
of 1200 white a and 1200 gray b triangles or patches. Both
types of patches have zero “spontaneous” curvature. The time ¢
is given in units of MC steps. The other model parameters are
specified in the text after Eq. (4).

the only parameter which is different for the two mem-
branes is the preferred or “spontaneous” curvature which
vanishes for all membrane patches in Fig. 1 but is nonzero
for the b patches in Fig. 2.

In Fig. 1, the first two snapshots illustrate the processes
of phase separation and domain coarsening. After about
10* MC steps, the first @ domain has transformed into
a bud as shown in the third snapshot of Fig. 1. Since

t=10° t= 1.4x10°

FIG. 2. Shape sequence for a vesicle membrane as in Fig. 1
but with gray b patches with nonzero “spontaneous” curvature.
The time ¢ is again given in units of MC steps.
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this domain has no spontaneous curvature, this process is
driven by the line tension of the (a8) domain boundary
[5]. Additional budding events eventually lead to a vesicle
morphology as shown in the last snapshot of Fig. 1: a large
B domain with several « buds and a single 8 bud (sitting
on top of an « bud).

If the b patches have a nonzero spontaneous curvature
as in Fig. 2, this latter curvature governs the budding pro-
cess as soon as it exceeds the curvature arising from the
line tension alone. It then acts to accelerate the budding
process and, thus, leads to the budding of smaller domains
as shown in Fig. 2.

For a symmetric (ab) mixture as considered here, the
domains which are formed within the membrane have
a rather anisotropic shape. During the initial stages of
budding, these elongated domains break up into several
smaller and more isotropic ones. Therefore, there is an in-
termediate time regime in which the number of domains
increases. For the vesicle shown in Fig. 2, budding starts
after about 10° MC steps and the breakup process leads
to an increase in the average number of domains from
15 to 25 as the system evolves between 10° and 10* MC
steps. After about 10* MC steps, all domains have been
transformed into buds, and the vesicle exhibits the maxi-
mal number of 25 buds. For longer times, the number of
buds decreases again via bud coalescence which is a rather
slow process; see Fig. 2. As shown below, the coalescence
regime is characterized by universal power laws.

Next, let us describe our algorithm in more detail. We
construct a model membrane by randomly triangulating
a two-dimensional surface of spherical topology as in
Ref. [13]. The vertices i with position vectors r; interact
through a tether potential with a tether length of /3 €y,
where €} is the hard-core diameter. Here and below,
all lengths are measured in units of €p.. The triangles
are labeled by / and their area denoted by A;. The
two membrane components, a and b, are described by
occupation numbers n; with n; = 0 for component a and
ny = 1 for component b. It will be convenient to use the
corresponding spin variables o; = 2n; — 1.

The statistical weight for the MC configurations is pro-
portional to the Boltzmann factor exp[—FH /T], where T
is the temperature in energy units and the effective Ham-
iltonian HH consists of three parts: H=H,. + H, +
Hy, arising from the tether potentials, the intramembrane
composition, and the bending energy, respectively.

The effective Hamiltonian for the intramembrane com-
position is simply given by

H/T =UY a0y, (1)
A7)

where the sum runs over all nearest neighbor pairs (1J)
of triangles. The interaction parameter U = [U%“ —
2U%% + UP"]/4 <0 where U% represents the pair

interaction between two a patches, etc.
In order to obtain the elastic energy, we discretize the
mean curvature M by calculating the contribution M; of
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every triangle [ to the total mean curvature integrated over
the whole area of the vesicle which leads to [16]

1
(AM); = ZZ Ir; — rj|arccos(é; - &), 2)
7

where the sum runs over the three triangles J which are
nearest neighbors of I. The parameter |r; — r;| is the
length of the edge dual to the bond (1J), and &; is the unit
normal of triangle /. Using the discretized “spontaneous”
curvature

(AMsp)l = Csp(l + 07)Ar/2 (3)

and the symbol « for the bending rigidity divided by the
temperature, one obtains the discrete form of the elastic
energy as given by

Ha/T =26 D [(AM); — (AMy)/ P/Ar. (@)
1

Thus, our model depends on four dimensionless parame-
ters: the interaction parameter U, the spontaneous cur-
vature Cs,, the bending rigidity «, and the mole fraction
¢ = N,/(N, + N;), where N, and N,, are the total num-
ber of a and b triangles, respectively. All results reported
in this article have been obtained for ¢ = 1/2. The (di-
mensionless) bending rigidity « represents the basic en-
ergy scale. For the membranes shown in Figs. 1 and 2, we
used k = 1 and U = 2k = 2. The spontaneous curvature
of the a patches was always taken to be zero, but was var-
ied within the range 0 = C;, = 1 for the b patches. In
Fig. 2, the b patches have C,, = 1/2.

Our simulations always started from a nearly spheri-
cal vesicle and a random distribution of a and b patches.
As mentioned, we performed three different types of MC
steps: displacements of vertices, edge flips, and exchange
moves of a and/or b patches. One MC step consisted of
N vertex displacements, 3N edge flips, and N exchange
moves. All times reported here are in units of MC steps.
The largest vesicles for which we could obtain reasonable
statistics contained 2400 triangles as in Figs. 1 and 2.

In order to follow the phase separation, we measured the
total length L of the domain boundaries within the mem-
brane. As shown in Fig. 3, this quantity decays mono-
tonically with time ¢. After some initial transients, this
decay is comparable to the usual coarsening process within
a flat two-dimensional system which is characterized by
L ~ t~1/3 as shown in Fig. 3. At later times, the time
evolution of L changes and gives some evidence for sev-
eral distinct time regimes; see Fig. 3.

In order to clarify the nature of these additional time
regimes, we measured other quantities such as the distri-
bution function for the domain size. We do not discuss
these distributions here since the corresponding data are
rather noisy. One robust quantity with a relatively small
statistical error is the total number of buds, Ny,q. The time
dependence of the total bud number Ny,q is displayed in
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FIG. 3. The total length L of the domain boundaries as a func-
tion of time #: The three sets of data are for different values of
the spontaneous curvature Cg, of the b patches. In all cases, the
membrane contains 1200 a and 1200 b patches, the (reduced)
bending rigidity k = 1, and the interaction parameter U = 2«k.
The straight line corresponds to L ~ ¢~ '/3.

Fig. 4 in a semilogarithmic manner for the time interval
1 =t = 1053, Inspection of this figure shows that bud-
ding occurs in a relatively small time interval in which
Npuq increases sharply.

The inset of Fig. 4 contains a double-logarithmic plot
of the MC data in the coalescence regime which indicates
a power law decay of Ny, for large ¢. This can be un-
derstood from the following scaling argument. First, the

40 =
- N + 1‘ -
30 . b
© +
a [ . i
=z L L +
20 4.4 5.0 56 b
log 1) |
10 & b
g
- w,-ﬁ; _
- 1 et
0
1 2 3 4 5 | i
o]
9,,®

FIG. 4. The total number of buds, Ny.q, as a function of time
t for a membrane with 1200 a and 1200 b patches. The data
points are obtained by an average over 15 different runs. The
semilogarithmic plot shows that Ny, increases abruptly for
10® < t < 10* The inset contains a double-logarithmic plot of
the data for the coalescence regime with ¢ > 10%; the straight
line corresponds to Npyg ~ =172, The parameters are U = 3,
k =1,and C5, = 1.
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fixed number N, of a patches implies that the mean dis-
tance {pug between the B buds is of the order of €pg ~
(N,A/Npua)'/? where A denotes the average patch area
[17]. In addition, at late stages in the phase separation
process, all b patches have been incorporated into S8 buds.
Therefore, the average bud size Ry,q fulfills the relation
N budRﬁud ~ NpA. A combination of these two relations
leads to €puq ~ (Na/Nb)l/szud.

Finally, one has to take into account that the bud dif-
fusion coefficient Dy,q depends on the bud size. The
Rouse-type dynamics used here implies a friction coeffi-
cient proportional to the number of patches within the bud.
The usual Einstein relation then leads to Dyyg ~ T/ th,ud.
We have verified this relation by additional MC simula-
tions in which we have studied the diffusion of single buds
directly.

Now, before two buds can coalesce, they must move by a
distance of the order of €y,4. The corresponding diffusion
time ¢ is given by t ~ €%ud /Dpug ~ Rﬁud as follows from
the above estimates. Thus, we find that the bud size and the
mean distance between the buds grows as Rpyg ~ €bud ~
¢'/4. This implies that the number of buds scales as Npyq ~
€o2 ~ 1/t with 6 = 1/2. Inspection of the inset of
Fig. 4 shows that this power law provides a good fit to
the available MC data up to t = 10°3. For t = 107, the
final equilibrium state will be attained which consists of a
dumbbell shape with one large « and one large 8 domain
[5]. We explicitly checked that this dumbbell is a stable
state of our algorithm.

The above scaling arguments can be generalized to in-
clude the effect of hydrodynamic interactions. Indeed, the
only change occurs in the friction coefficient which is now
given by the Stokes expression f ~ 1 Rypuq where 7 is the
dynamic viscosity of the aqueous solution [18]. Therefore,
one has Ryug ~ €pua ~ 773, and the number of buds de-
cays as Noua ~ Com ~ 1/1% with 6 = 2/3.

In summary, a new simulation algorithm for multicom-
ponent membranes was used to study the dynamics of
budding. The buds were found to undergo a coalescence
process characterized by scaling laws. For Rouse-type dy-
namics, the decay of the bud number, Nyyg ~ 1/ 1172 was
determined both by MC simulations and by scaling ar-
guments. In the presence of hydrodynamic interactions,
analogous scaling arguments lead to Nyuq ~ 1/123. Tt
seems possible to investigate the latter dynamics using the
numerical scheme in Ref. [19], but this remains to be done.

Finally, the phenomena studied here by simulations
should also be accessible to experiments. One interesting
system is the plasma membrane of red blood cells which
contains a mixture of several lipid species and cholesterol.
Indeed, it has been recently found that monolayers pre-
pared from these lipid mixtures do indeed form several
coexisting fluid phases [20]. Therefore, bilayers reconsti-
tuted from these mixtures are very promising candidates
for the budding phenomena described here.
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Note added.— Domain-induced budding should also oc-
cur for model membranes with lipid rafts as studied by
Dietrich et al. [21].
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