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Multibit Gates for Quantum Computing
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We present a general technique to implement products of many qubit operators communicating via a
joint harmonic oscillator degree of freedom in a quantum computer. By conditional displacements and
rotations we can implement Hamiltonians which are trigonometric functions of qubit operators. With
such operators we can effectively implement higher order gates such as Toffoli gates and Cn-NOT gates,
and we show that the entire Grover search algorithm can be implemented in a direct way.
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A quantum computer is a device which is capable of co-
herently processing information which is stored in a collec-
tion of small quantum systems. Much attention has been
devoted to quantum computers due to the discovery of al-
gorithms which enable a quantum computer to solve cer-
tain computational problems much faster than any classical
computer [1,2]. In a quantum computer an algorithm is
represented as a series of unitary operations, and with a set
of so-called universal gates acting only on single two-level
systems and on pairs of two-level systems, it is possible to
produce any unitary evolution on the Hilbert space of a col-
lection of two-level systems so that any algorithm can be
implemented with these gates [3]. This theorem couples
the development of quantum computing to the theory of
classical computing where a similar theorem exists, and the
complexity of various computational tasks has been ana-
lyzed simply by counting the number of universal gates
required to perform the entire computation. Proposals for
practical implementation of quantum computing deal with
practical issues such as identification of quantum systems
which can be addressed by the experimentalist, but which
do not decohere with time, and it is a particularly interest-
ing task to find ways to implement the two-bit gates, acting
on the joint state of a pair of two-level systems (with in-
ternal states j0� and j1�), or qubits.

Starting with the ion trap proposal by Cirac and Zoller
[4], a number of proposals for quantum computing exists,
where the individual qubits are coupled to a harmonic os-
cillator degree of freedom, and where two-bit gates are
implemented by use of the coupling to such a “data bus.”
In the ion trap, the internal electronic or hyperfine states of
the ions are coupled to the collective vibrational degree of
freedom due to the recoil during absorption of laser light;
quantum dots may be localized in an optical cavity and
communicate via a single mode of the optical field [5], and
it has been proposed to couple Josephson-junction qubits
by an LC-oscillator mode in an electrical circuit [6].

In the original ion trap proposal [4], the state of one
qubit is transferred to the data bus which is then brought
into interaction with the second qubit of the gate. In this
proposal it is essential that the state of the harmonic oscil-
lator is initially cooled to the ground state. In order to be
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able to use an oscillator which is not initially in a known
state, one can use a scheme which only virtually excites
it [7], so that the internal states of the ions are completely
disentangled from the unknown state of the oscillator. It
is even possible to use a scheme which dramatically en-
tangles the qubits with the oscillator degrees of freedom,
to only magically at the end of the operation remove all en-
tanglement and produce an effective coupling of two qubits
which is completely independent of the state of the oscilla-
tor [8,9]. To produce a unitary time evolution of the form
exp�imÂB̂), where Â, B̂ commute, these proposals use the
simple fact that

exp�il1xÂ� exp�il2pB̂� 3

exp�2il1xÂ� exp�2il2pB̂� � exp�2il1l2ÂB̂� . (1)

This property can be seen from the Baker-Hausdorf rela-
tion since Â and B̂ commute and the commutator of the
oscillator position x and momentum p is a constant. Ap-
plication of (1) requires that one can induce interaction
Hamiltonians proportional to xÂ and pB̂. Since these op-
erators can be expressed in terms of lowering and raising
operators such couplings can be induced using the reso-
nance condition associated with excitation and deexcitation
of the oscillator together with the implementation of the in-
ternal state operators. If Â and B̂ act on different qubits, we
obtain a two-qubit gate. If they both involve many qubits,
we can produce multiparticle entangled states. It has al-
ready been shown that if we take Â � B̂ � Ĵy �

P
l

1
2syl ,

Eq. (1) leads to an effective interaction proportional to Ĵ2
y ,

which can be used to produce a Schrödinger cat like state
of the bits [9–11]. Throughout this Letter we apply a Pauli
spin notation for the description of the qubits. The qubit
states j0l�1l�� are defined as the szl � 21�1� eigenstates.

It will be useful to have a geometric picture of the con-
tents of Eq. (1): Each of the exponential terms on the
left-hand side are displacement operators for the harmonic
oscillator (conditioned on the internal eigenstates of op-
erators Â and B̂), and the four terms displace the system
around the rectangular path in Fig. 1(a). When a system
is displaced around a closed loop in phase space, the state
vector acquires a geometric phase factor equal to the en-
closed area [9]. In Fig. 1(a) the area is the product of the
© 2001 The American Physical Society 3907
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FIG. 1. Translations in xp-phase space of the oscillator during
gate operation: (a) In the evolution described by Eq. (1), the
oscillator is displaced by the amount l2B̂ along the x axis, then
by 2l1Â along the p axis, etc., and when it eventually ends
up in the initial state, a geometric (and internal state dependent)
phase factor given by the enclosed area l1l2ÂB̂ multiplies the
state vector of the system. (b) By application of an interaction
proportional to Ĉn, the displacement along the p direction in
part (a) of the figure can be rotated into another direction given
by the angle uĈ, and the area enclosed by the solid line be-
comes l1l2ÂB̂ cos�uĈ�. To perform a Grover search or Cn-NOT
operation we need to enclose several parallelograms with angles
which are multipla of Ĉu. An effective way to achieve this is
to place all subsequent parallelograms so that they share one
side with the previous one, as shown with the dashed curve for
the second parallelogram. With this construction, the multibit
operation can be achieved by traversing only the outline of the
combined figure.

lengths of the sides, which due to the operator character
of these lengths becomes the product of two internal state
operators, and the resulting phase factor is the operator on
the right-hand side of Eq. (1).

The trick contained in Eq. (1) suffices to produce two-bit
gates since the operators Â and B̂ can be replaced by
any pair of single particle operators acting on particles
one and two. The C-NOT gate, which is obtained by us-
ing Â � �sz1 1 1��2, B̂ � sx2, and l1l2 � p�2, can be
combined with single particle operations to produce any
unitary operation acting on all the bits [3]. This method in
general involves several one and two particle gates to pro-
duce multibit gates. For instance, in Ref. [3] four one-bit
gates and three two-bit gates were used to construct a
three-bit gate which apart from phase-factors is equivalent
to the C2-NOT or Toffoli gate. Experimentally each gate
corresponds to turning on a given Hamiltonian for a cer-
tain duration, and therefore each gate adds an experimental
complication and/or possibility of error. In this paper we
pursue a different strategy for implementing multibit gates.
We will show that one may extend the trick in Eq. (1) to
produce higher order gates directly.

In [9], we discussed the application of a Hamiltonian
with continuously varying terms in Âx and B̂p, and we
showed, in particular, that harmonically varying coeffi-
cients on the operators corresponding to bichromatic fields
can also be used to produce the operator products. To ex-
tend these results to multibit gates we shall need a slightly
more general interaction which may be described by

H�t� � y�t�Âx 1 w�t�B̂p 1 r�t�Ĉn , (2)
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where Â, B̂, and Ĉ are commuting operators acting on
the internal states of the atoms, n is the number operator
for the harmonic oscillator, and y, w, and r are arbitrary
functions of time. With this Hamiltonian the time depen-
dent Schrödinger equation for the propagator idU�t��dt �
H�t�U�t� has the solution

U � e2iŜ�t�e2inR̂�t�e2ixV̂ �t�e2ipŴ�t�, (3)
with

R̂�t� � Ĉ
Z t

0
r�t0� dt0,

V̂ �t� �
Z t

0
Ây�t0� cos�R̂�t0�� 2 B̂w�t0� sin�R̂�t0�� dt0,

Ŵ�t� �
Z t

0
B̂w�t0� cos�R̂�t0�� 1 Ây�t0� sin�R̂�t0�� dt0, (4)

Ŝ�t� � 2
Z t

0
V̂ �t0� �B̂w�t0� cos�R̂�t0��

1 Ây�t0� sin�R̂�t0��� dt0.

It is straightforward to check the solution by taking the
time derivative of U and using the Baker-Hausdorf rela-
tion to simplify the result. In the xp-phase space the net ac-
tion of this propagator is to perform translations �x,p� !
�x 1 Ŵ�t�,p 2 V̂ �t�� followed by a rotation by an angle
R̂�t� around the origin. Since the functions V̂ , Ŵ , and R̂
involve the internal state operators Â, B̂, and Ĉ the trans-
lation and rotation is entangled with the internal states of
the bits. We now generalize the trick applied in Eq. (1)
to ensure that V̂ , Ŵ , and R̂ vanish after a certain time
t, such that the harmonic oscillator is returned to its initial
state, and we are left with an internal state evolution opera-
tor exp�2iŜ�t��, where Ŝ�t� is the area enclosed by the
trajectory in the phase space. Note that the expression for
Ŝ�t� does not involve operators referring to the harmonic
oscillator, so that the gate is insensitive to the initial state
of the oscillator. This gate can be applied with the oscilla-
tor in an unknown state, e.g., in a thermal state.

As a first concrete example of our procedure consider
three bits which are subject to the time independent
Hamiltonian

H � V

∑
sz1 1 sz2 1 1

4
p
K

x 2 sx3

µ
n 1

1
32K

∂∏
, (5)

where K is an integer. After a duration t � K2p�V the
propagator (3) reduces to exp�2ip��sz1 1 sz2 1 1�2 2

1�sx3�16� � exp�2ip�sz1 1 1� �sz2 1 1�sx3�8�, which
is exactly the Toffoli gate. [We used the fact that for a
single particle Pauli operator s, sin�us� � sin�u�s.] In
the ion trap quantum computer the gate can be achieved
by applying a single pulse of suitably directed and detuned
fields to the ions.

The three particle Toffoli gate can be constructed so
easily because the constant term in sz1 1 sz2 1 1 can
be chosen so that this operator squared yields the desired
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combination of internal state operators apart from a single
particle rotation. This technique is not directly applicable
for more than three particles, and we have not been able
to devise a similar simple construction with only a single
Hamiltonian in this situation. Instead we shall produce
gates by sequentially applying three different Hamiltoni-
ans. To make a Cnc -NOT operation, where the first nc qubits
control the action of the nc 1 1st qubit, we need a projec-
tion operator which projects into the space where all the nc
control bits are in the j1� state. Such a projection operator
can be expressed as a product of single particle projec-
tion operators

Qnc
l�1�szl 1 1��2, and the Cnc -NOT opera-

tion may be expressed as exp�2ip�2
Qnc
l�1

�szl11�
2 sxnc11�.

The operators that are easy to make in practice are sums of
individual particle operators like Ĵz 2 J �

Pnc
l�1

�szl21�
2 .

To turn the sum into a product, we observe that if and
only if all nc control qubits are in the j1� state, not only
is the product

Qnc
l�1

�szl11�
2 equal to unity, also the sum

Ĵz 2 J �
Pnc
l�1

�szl21�
2 vanishes. We now use the Fourier

transform
Pm
k�1 cos�2p

k
mN� � md�Nmodm� which can

also be applied to operators so that
ncY
l

�szl 1 1�
2

�
1

nc 1 1

nc11X
k�1

cos

µ
2pk
nc 1 1

�Ĵz 2 J�
∂

.

(6)

The Cnc -NOT gate is thus the product of nc 1 1 terms
exp� ip

2�nc11� cos� 2pk
nc11 �Ĵz 2 J��sxnc11� (k � 1, 2, . . . ,

nc 1 1).
To implement a unitary operator which can be written

in the form exp�2imÂ cos�uĈ��, where Â and Ĉ are inter-
nal state operators, we make explicit use of the fact that
we have an internal state operator appearing inside a trigo-
nometric function in the expression for Ŝ (4). Geomet-
rically, we follow the construction of the parallelogram
in Fig. 1(b): First, we apply a Hamiltonian proportional
to Âp which performs a translation along the x axis.
Then a Hamiltonian H 	 Ĉn makes a rotation of the
phase space by an angle uĈ: exp�iuĈn�x exp�2iuĈn� �
cos�uĈ�x 1 sin�uĈ�p, and we perform a translation along
the p axis with B̂ equal to the identity, etc. The enclosed
area is proportional to Â cos�uĈ� and the propagator has
the desired form exp�2imÂ cos�uĈ��. By varying the
strength and duration of the pulses one can control the
parameters u and m, and using Â � sx,nc11 and Ĉ �
Ĵz 2 J the parallelogram results in the time evolution op-
erator exp�2im cos�u�Ĵz 2 J��sx,nc11�.

By using the operator identity (6) we can devise a
Cnc -NOT gate by following the outline of nc 1 1 such
parallelograms, one after the other. By rotating each
parallelogram, so that the first linear displacement is pre-
cisely the opposite of the last displacement of the previous
parallelogram, we can save half of the translations. Note
that the sum over l implicit in the Ĵz term in Eq. (6) just
amounts to illuminating several qubits instead of a single
qubit at a time.
In 1997, Grover presented a search algorithm [2] that
identifies the single value x0 that fulfills f�x0� � 1 for a
function f�x� provided, e.g., by an oracle (all other argu-
ments lead to vanishing values of the function). If x is
an integer on the range between 0 and N 2 1 � 2n 2 1,
the search algorithm is able to find x0 after on the order
of

p
N evaluations of the function. Grover’s algorithm has

been demonstrated on NMR few qubit systems [12]. In
the following we show how our proposal can be used to
implement the search algorithm.

The quantum algorithm first prepares an initial trial state
vector populating all basis states with equal probability. To
implement a full Grover search the function f�x� has to be
a nontrivial function which is implemented by the quantum
computer, but for demonstrational purposes, the function
f�x� can be encoded by letting the state of the register
undergo a transformation where the amplitude of the x0
component changes sign and all other amplitudes are left
unchanged. This step can be implemented by writing x0 in
binary form, b0b1b2 · · ·bn21, and by applying the unitary
operator

Uf � exp

"
ip

n21Y
l�0

µ
szl 1 2bl 2 1

2

∂#
. (7)

Below we show how this time evolution may be imple-
mented with our procedure. Note that the corresponding
effective Hamiltonian vanishes when applied to any state
where the qubit value (eigenvalue of szl) does not coincide
with 2bl 2 1, i.e., the state must be the exact representa-
tion of x0 to acquire the sign change.

The crucial step in Grover’s algorithm is an “inversion
about the mean,” where the amplitude with the sign
changed will grow in comparison with the other ampli-
tudes. In the n-qubit computer with N � 2n amplitudes
cx , the operation can be written cx !

1
N

P
x0 cx0 2 �cx 2

1
N

P
x0 cx0�. The sum of all amplitudes of the state vector

jc� can be obtained as any component in the vector Mjc�,
where M is the N 3 N matrix with unit elements in all
positions. The inversion about the mean is therefore given
by the unitary matrix [2]

UG �
2
N
M 2 I , (8)

where I is the N 3 N identity matrix.
A straightforward calculation shows that the M ma-

trix fulfills �sM�k � skNk21M, and hence we have the
exponential

exp�sM� � I 1
X̀
k�1

�sM�k

k!
� I 1

1
N

�esN 2 1�M . (9)

Thus, by choosing sN � ip , we get exp�sM� �
I 2

2
NM, which apart from an irrelevant global phase

yields precisely the inversion about the mean.
In the standard binary basis, the matrix M couples all

states to any other state, and it can be written as the
3909
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tensor product P
n21
l�0 �sxl 1 1�, where the single qubit op-

erators sxl 1 1 are 2 3 2 matrices with unit elements in
all positions. The inversion about the mean is therefore
produced directly by the action of the following multipar-
ticle operator

UG � exp

"
ip

n21Y
l�0

µ
sxl 1 1

2

∂#
, (10)

where we used N � 2n.
Both Uf and UG can be implemented effectively using

(6). To implement the function (7), it is easiest to first in-
vert all the bits, which have the value zero in x0, so that
Uf on that state should encode only unit bit values, i.e.,
Uf is precisely the exponential of the projection operator
in the left hand side of Eq. (6). Following the outline of
the parallelogram in Fig. 1(b) with Â and B̂ equal to the
identity and Ĉ �

Pn21
l�0

�szl21�
2 we obtain the exponential

of one of the terms in the sum on the right-hand side, and
by combining n 1 1 such terms one can construct the full
sum. After application of this simpleUf , the qubits encod-
ing the value zero should be flipped back again. All qubits
should then have their sx components rotated into the z
direction, to use again the operation in (6) to implement
UG , which is the same operator, defined for the x com-
ponents of the spins. The whole algorithm only requires
individual access for the single qubit spin flips used to en-
code x0, and for the final readout. An easy demonstration
experiment where x0 � 1111 · · · 1 can thus be performed
without individual access at all (one only needs to verify
that the number of excited qubits at the end equals the total
number of qubits).

In summary, we have presented a technique to produce
multibit gates in quantum computers where all qubits are
coupled to a joint harmonic oscillator degree of freedom.
We have derived general expressions, and we have exem-
plified the method by an analysis of the Grover search
and the Cn-NOT gate, which appears frequently, e.g., in
error correcting codes [13]. A recent preprint [14] has ad-
dressed the achievements of so-called “concurrent quan-
tum computing,” in which access to multibit interaction
Hamiltonians of the form Plszl is assumed. That paper
presents ideas for Grover’s and Shor’s algorithm, with-
out suggesting a practical means to implement the in-
teraction. Our procedure provides a proposal for such
implementation: since we can write exp�2im

Q
l szl� �

exp�2im cos�p
P
l�szl 2 1��2��, a single parallelogram

as in Fig. 1(b) suffices to produce this operator.
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It is known how to make C2-NOT and C3-NOT gates by
means of one- and two-bit gates, but it is difficult to make a
theoretical comparison of these implementations with our
proposal, since we build up the desired one-, two-, and
multibit interactions continuously in time. From a practi-
cal perspective, however, our scheme should be really ad-
vantageous. The essential operation in the Grover search
(10) is implemented without access to the individual qubits
and, e.g., in the ion trap it is much easier to implement the
Hamiltonian H �

P
l�szl 2 1�n than just a single term

H � �szl 2 1�n in that sum. In addition, it is an experi-
mental advantage to apply as few control Hamiltonians as
possible, since imprecision in timing accumulates if many
operations are needed.

A feature of our proposal worth emphasizing is that all
operations are expressed as unitary gates acting on the
qubit degrees of freedom. The oscillator is certainly impor-
tant, and only at the end of the gates do the qubits actually
decouple from the oscillator. One consequence is that the
initial state of the oscillator does not have to be specified.
It can be in the ground state, an excited state, or even in
an incoherent mixture of states, possibly entangled with
environmental degrees of freedom, as long as this entan-
glement does not evolve during gate operation.
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