
VOLUME 86, NUMBER 3 P H Y S I C A L R E V I E W L E T T E R S 15 JANUARY 2001
Width and Partial Widths of Unstable Particles
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In the gauge theory context, a definition of branching ratios and partial widths of unstable particles is
proposed that satisfies the basic principles of additivity and gauge independence. A simpler definition,
similar to the conventional one, is examined in the Z0-boson case. In order to establish contact with
experiment, we show that it leads to a peak cross section that justifies the expression used by the LEP
Electroweak Working Group through next-to-next-to-leading order, provided that the pole rather than the
on-shell mass and width of the Z0 boson is employed.
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The mass, width, and partial widths of unstable particles
rank among the basic concepts in particle physics. In fact,
most fundamental particles of nature are unstable, and their
masses, widths, and partial widths are some of their crucial
defining properties. Yet, the precise and consistent defini-
tions of these concepts have been notoriously difficult and
elusive over a period spanning several decades. The rea-
son is that unstable particles are not asymptotic states and,
consequently, they lie somewhat outside the traditional for-
mulation of quantum field theory.

The conventional definitions of mass and width are

M2 � M2
0 1 ReA�M2� , (1)

MG � 2
ImA�M2�

1 2 ReA0�M2�
, (2)

where M0 is the bare mass and A�s� is the self-energy in the
case of scalar bosons and the transverse self-energy in the
case of vector bosons. The partial widths are then defined
by decomposing the numerator of Eq. (2) into a sum of
contributions involving distinct sets of final-state physical
particles. Most calculations of partial and total widths
are based on Eqs. (1) and (2). We will refer to M as the
on-shell mass and to Eqs. (1) and (2) as the conventional
on-shell formulation.

The emergence of gauge theories has brought into the
discussion a new and powerful element, namely, the re-
quirement of gauge independence of physical observables.
It was shown in Ref. [1] that, in a gauge theory, Eqs. (1)
and (2) become gauge dependent in O�g4� and O�g6�, re-
spectively, where g is a generic gauge coupling. As the
leading contributions to M2 and G are of order O�g0� and
O�g2�, respectively, we see that in both cases the problem
arises in the next-to-next-to-leading order (NNLO). In the
same paper, it was proposed that the way of solving this
predicament is to base the definitions of mass and width
on the complex-valued position of the propagator’s pole,

s̄ � M2
0 1 A�s̄� , (3)

an idea that goes back to well-known tenets of S-matrix
theory [2]. A frequently employed parametrization is
s̄ � m2

2 2 im2G2, where we use the notation of Ref. [1].
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Identifying m2 and G2 with the gauge-independent defini-
tions of mass and width of the unstable particle, it follows
from Eq. (3) that

m2G2 � 2ImA�s̄� . (4)

Over the past several years, a number of authors have ad-
vocated the use of s̄ as the basis for the definition of mass
and width [3]; the conclusions of Ref. [1] have been con-
firmed by later studies [4,5] and proven to all orders [6]. It
has been shown that, in the case of a heavy Higgs boson,
the gauge dependences of M and G are numerically large
[5]. It has also been emphasized that the on-shell defi-
nition of width [Eq. (2)] leads to severe problems if A�s�
is not analytic in the neighborhood of M2. This occurs,
for instance, when the mass of the decaying particle lies
very close to a physical threshold [7,8] or, in the resonance
region, when the unstable particle is coupled to massless
quanta, as in the cases of the W boson and the unstable
quarks [9]. Significant progress has also been achieved in
the treatment of unstable particles in the framework of the
pinch technique [10].

An important issue that arises at this stage is the follow-
ing: if Eq. (4) provides a consistent definition of width,
what is the definition of partial widths? It must clearly
satisfy two important properties: additivity, i.e., the sum
of the partial widths must equal the total width [Eq. (4)],
and gauge independence.

We consider the process i ! Z0 ! f, where i and f are
initial and final states involving particles which are either
stable or have negligible widths. The transverse part of the
propagator is given by

Dmn � 2i
Qmn

s 2 s̄ 2 �A�s� 2 A�s̄��
, (5)

where Qmn � gmn 2 pmpn�s, pm is the four-momentum
of the Z0 boson, and s � p2. The vertex amplitude is of
the form

V
m
f �s� � � fjJ

m
Z j0� �

X
a

y
�a�
f �s, . . .�M�a�m

f , (6)

where M
�a�m
f denote various independent vector and axial-

vector matrix elements involving the spinors, polarization
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four-vectors, and four-momenta of the final-state particles,
while y

�a�
f �s, . . .� are scalar functions. The dots indicate

their additional dependence on the momenta of the final-
state particles. In this paper, we use the convention of in-
cluding the coupling 2ig�c, where c is an abbreviation
for cosuw , in the definition of y

�a�
f �s, . . .�, so that, in lead-

ing order, y
�a�
f �s, . . .� � O�g�. Expanding Eq. (6) and the

denominator of Eq. (5) about s � s̄, it is well known [3]
that the overall amplitude can be written in the form

Afi�s� � 2i
QmnV

m
f �s̄�Vn

i �s̄�
�s 2 s̄� �1 2 A0�s̄��

1 N , (7)

where N represents nonresonant contributions. As the pole
residues y

�a�
f �s̄, . . .�y�b�

i �s̄, . . .���1 2 A0�s̄�� are gauge inde-
pendent for any choice of the states i, f and the ampli-
tudes a, b, a gauge-independent definition of partial width
is given by

m2Ĝf � 2
1
6

X
spins

Z
dFf

QmnV
m�
f �s̄�Vn

f �s̄�
j1 2 A0�s̄�j

. (8)

The integration is over the phase space of the final-state
particles with �

P
n pn�2 � m2

2, a factor of 1�3 arises from
the average over the initial-state polarization, and a factor
of 1�2 arises from the familiar relation between m2Ĝf and
the integrated amplitude square.

A limitation of Eq. (8) is that there is no guarantee that
it satisfies the additivity property. In fact, it is expected
that

P
f Ĝf fi G2 when one includes NNLO contributions.

In order to remedy this situation, we propose to define the
branching ratios by

Bf �
ĜfP
f Ĝf

, (9)

and the partial widths by

Gf � BfG2 . (10)

The gauge independence of Eq. (8) implies that of Eq. (9),
while Eqs. (9) and (10) guarantee the additivity property,P

f Gf � G2. The rescaling in Eqs. (9) and (10) implies
that Ĝf � Gf�X�m2G2�, where

X � m2

X
f

Ĝf . (11)

The resonant cross section at s � m2
2 is proportional to

ĜeĜf��m2G2�2 � �GeGf��m2G2�2� �X�m2G2�2, where Ge

is the Z0 ! e1e2 partial width. Hence, it is modified
by a factor �X�m2G2�2 when expressed in terms of the
widths Gf that satisfy the additivity property. We note that
X�m2 and G2 represent two different definitions of total
width, based on the pole residues and the pole position,
respectively. The ratio �X�m2G2� differs from unity by
gauge-independent terms of O�g4�, i.e., in NNLO. As a
consequence, in the Z0-boson case, this is expected to be
390
a very small effect, of the same order of magnitude as
nonresonant contributions that are frequently neglected.

Next, we examine the difference X 2 m2G2 in greater
detail. It is convenient to split I�m2

2� � ImA�m2
2� into

the form

I�m2
2� � F�m2

2� 1 G�m2
2� , (12)

F�m2
2� �

X
f

If�m2
2� , (13)

If�m2
2� �

1
6

X
spins

Z
dFf QmnV

m�
f �m2

2�Vn
f �m2

2� . (14)

2If�m2
2��m2 is the conventional expression for the partial

width of the unstable particle into the physical state
f, modulo the wave-function renormalization of the
unstable particle, with the important difference that
it is evaluated at the gauge-independent pole mass
m2 rather than the gauge-dependent on-shell mass M.
G�m2

2� � I�m2
2� 2 F�m2

2� involves contributions from un-
physical intermediate states (Goldstone bosons, Faddeev-
Popov ghosts, and longitudinal modes of gauge bosons),
which can contribute to I�m2

2� for sufficiently low values
of the gauge parameters [1].

In the conventional on-shell formulation, it is assumed
that I�M2� can be expressed as a sum of contributions
involving solely physical intermediate states, namely,
I�M2� �

P
f If�M2�. The argument invokes the unitarity

of the S matrix and would, in fact, be valid if I�M2� were
an S-matrix amplitude. However, as the unstable particle
is not an asymptotic state, this is not the case, and the
above decomposition into physical cut contributions must
be viewed as an approximation. In fact, we will show in
this section that G�m2

2� fi 0 in O�g6�, i.e., in NNLO.
We study the difference X 2 m2G2 � X 1 ImA�s̄�,

where X is defined in Eqs. (8) and (11), by expanding
y

�a�
f �s̄, . . .�, A0�s̄�, and A�s̄� about s � m2

2 through terms
of O�g6�. The leading term in the expansion of ImA�s̄�
is I�m2

2�, for which we employ the decomposition of
Eq. (12). The F�m2

2� term cancels the leading contribution
from X, and we find

X 2 m2G2 �
�m2G2�2

2
I 00 2

m2G2

2
�I 0�2 1 G�m2

2�

2
m2G2

3

X
f,spins

Z
dFf Qmn

3 Im�Vm�
f �m2

2�Vn0
f �m2

2�� , (15)

where the primes indicate derivatives with respect to s,
evaluated at s � m2

2. Since X and m2G2 are gauge in-
dependent, Eq. (15) determines the gauge-dependent part
of G�m2

2� in O�g6�. Since G2 and I are of O�g2�, y
�a�
f

is of O�g�, and y
�a�0
f is of O�g3�, it suffices to consider

the gauge dependence of the one-loop electroweak con-
tributions to I�s� and y

�a�
f �s, . . .�. Furthermore, in the
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consideration of the vertex contributions, we may restrict
ourselves to the two-particle final states, since those in-
volving more particles give gauge-dependent contributions
of higher order.

In the Z0-boson case, the gauge dependence of I�s�
and y

�a�
f �s, . . .� at the one-loop level can be obtained from

Eqs. (7), (8), (17), and (24) of Ref. [11] in the approxi-
mation of neglecting the masses of the external fermions,
which we henceforth adopt. Applying those results to
Eq. (15) and noting that G�m2

2� vanishes for jW . 1�c2,
where jW is the gauge parameter associated with the W
boson, we find

G�m2
2� �

m2G2

2
��I 0�2 2 �F0�2� 2 g2c2m2

2G2
2�jW 2 1�

3 ImhW �m2
2� 1 O�g8� , (16)

where hW is a gauge-dependent amplitude given in
Ref. [11]. Its imaginary part is nonvanishing in a sub-
class of gauges characterized by MZ . 2

p
jW MW or

jW , 1��4c2� [1,11]. It is worth noting that one-loop
g Z mixing contributions, which have been taken into
account, cancel in the derivation.

We now discuss an alternative and manifestly additive
definition of branching ratios, namely,

B̃f,2 �
If�m2

2�
F�m2

2�
. (17)

The corresponding partial widths are

G̃f,2 � B̃f,2G2 . (18)

Equation (17) is the conventional definition employed
in current calculations, except that the amplitudes are
evaluated at the gauge-independent pole mass m2 rather
than at the on-shell mass M. Similarly, Eq. (18) also
involves the gauge-independent width G2 rather than G.
Recalling Eq. (4), Eq. (8) can be expressed in the form

m2G̃f,2 � 2
If�m2

2�
F�m2

2�
I�m2

2�
1 1 �ImA�s̄� 2 I�m2

2����m2G2�
,

(19)

since the second factor on the right-hand side equals
2m2G2 [8]. We note that the denominator of this second
factor differs from the conventional wave-function renor-
malization in NNLO. By construction, Eqs. (17) and (18)
satisfy the additivity property,

P
f G̃f,2 � G2. In order to

establish contact with experiment, we now show that it
leads to a peak cross section that is gauge independent
through O�g4�, i.e., through NNLO.

Using Eqs. (5) and (6), the amplitude at s � m2
2 for the

process i ! Z0 ! f is found to be

Afi�m2
2� � 2

QmnV
m
f �m2

2�Vn
i �m2

2�
m2G2 2 i�A�s̄� 2 A�m2

2��
1 Ñ , (20)

where Ñ represents nonresonant contributions. Disregard-
ing for the moment the contributions from Ñ , we consider
the square of the absolute value of the first term on the
right-hand side of Eq. (20), integrate over the phase space
of the final-state particles, sum over their spins, and av-
erage over those of the initial-state particles. Noting that
Re�A�s̄� 2 A�m2

2�� � m2G2I 0�m2
2� � O�g4� in leading or-

der, and making use of Eqs. (12), (14), and (19), we find,
for the resonant contribution through O�g4�,

s0
R �

12pG̃e,2G̃f,2

m2
2G

2
2

∑
1 2 �I 0�2 1

2G�m2
2�

m2G2

∏
, (21)

where we have identified the initial state with an e1e2 pair
and G̃e,2 �G̃f,2� is the Z0 ! e1e2 �Z0 ! f� partial width,
defined according to Eqs. (17) and (18). In Eq. (21), it
is understood that s0 is the cross section devoid of initial-
state radiation effects, which are usually taken into account
by a suitable convolution with a radiator function [12].

At this stage, we recall that the nonresonant ampli-
tude Ñ in Eq. (20) includes contributions from box and
photon-mediated diagrams as well as nonresonant effects
from g-Z mixing graphs. In leading order, their gauge-
dependent parts can be found from the results of Ref. [11].
Inserting Eq. (16) into Eq. (21), one finds that the
gauge-dependent �I 0�2 term is removed and that the ImhW

contribution in Eq. (16) cancels in leading order the
gauge-dependent part of the interference of Ñ with the
first term in Eq. (20). Thus, we find, at s � m2

2,

s0�m2
2� �

12pG̃e,2G̃f,2

m2
2G

2
2

µ
1 2

G
2
2

m2
2

∂
1 s0

B�m2
2� , (22)

where we have used F0�m2
2� � 2G2�m2 in leading order

and the background part s
0
B is a gauge-independent con-

tribution of O�g4�. As s0 is a physical observable, the
fact that Eq. (22) is devoid of gauge-dependent contribu-
tions implies that the partial widths G̃e,2 and G̃f,2, defined
on the basis of Eqs. (17) and (18), are gauge independent
through O�g6�, i.e., through NNLO.

The current analyses of the electroweak data measure
m1 � �m2

2 1 G
2
2�1�2 and G1 � m1G2�m2 rather than m2

and G2 [1], and determine the peak cross section at s � m2
1

rather than at s � m2
2. If the branching ratios are defined

by B̃f,1 � If�m2
1��F�m2

1� and the partial widths by G̃f,1 �
B̃f,1G1, instead of Eqs. (17) and (18), we find that the cross
section at s � m2

1 is given by

s0�m2
1� �

12pG̃e,1G̃f,1

m2
1G

2
1

1 s0
B�m2

1� . (23)

The theoretical expression employed by the LEP Elec-
troweak Working Group (EWWG) [13] is of the same form
as the first term in Eq. (23). Thus, Eq. (23) justifies this
expression through terms of O�g4�, i.e., through NNLO
in the electroweak interactions, provided that the gauge-
independent definitions of mass and width are employed.
We note that this means that contributions of O�g6� to
the partial and total widths are incorporated into Eqs. (22)
and (23). On the other hand, s

0
B can be evaluated from

tree-level and one-loop diagrams.
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We conclude with the following observations and
summary of our results: (i) In the hadronic sector, the
formulation of this paper is restricted to the parton level
of quarks and gluons, i.e., the effects of confinement are
not taken into account. Since Gt is of order 1023 eV
and the widths of the least massive B and D mesons are
even smaller, we neglect the leptonic widths as well as
those of the five lightest quarks. (ii) If the final-state
particles have negligible widths, Eq. (8) provides a gauge-
independent definition of partial widths to all orders of
perturbation theory. In Eqs. (9) and (10), we have shown
how this definition can be modified in order to satisfy
the additivity property. (iii) A rigorous analysis does
not include unstable particles in the final states. They
are rather treated as virtual particles, which decay into
stable ones. Examples are Z0 ! f1f̄2W� ! f1f̄2f3f̄4,
H ! W1�W2� ! f5f̄6f7f̄8, where fi denote stable
fermions. In domains of phase space where the virtual W�

bosons are in their resonant regions, a resummation analo-
gous to Eq. (7) is in general required. In the W-boson case,
processes of this kind are forbidden by kinematic consid-
erations. (iv) In Eq. (15), we have analyzed, to leading
order and in the Z0-boson case, the difference X 2 m2G2
between two different gauge-independent definitions of
total widths, based on the pole residues and the pole
position, respectively. An interesting by-product is the
evaluation of the amplitude G�m2

2� [Eq. (16)], which
represents the contribution to I�m2

2� from nonphysical
intermediate states. The result G�m2

2� fi 0 in O�g6�
reflects the fact that the unstable particle is not an asymp-
totic state. (v) In Eqs. (17)–(23), we have examined, in
the Z0-boson case, an alternative and simpler definition
of partial widths that is similar to the one employed in
current calculations, except that it makes use of the pole
rather than the on-shell mass and width. Subject to this
modification, Eq. (23) provides a theoretical justification,
through NNLO in the electroweak interactions, for the
peak cross section employed by the EWWG [13]. In
this regard, it is important to note that Eqs. (22) and
(23) incorporate corrections of O�g6� to the width and
partial widths.
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